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Values of Selected Trigonometric Functions

Angle in Degrees  Sine (sin) Cosine (cos) Tangent (tan) sinh (0) =
0 0 1 0
0 1 3 J3 cosh (0) =1
2 2 3
J2 > tanh(0) =0
45 ek e 1
2 2
coth(0) = &
2 2
90 1 0 Undefined csch(0) =&
180 0 -1 0
sech(0) =1
270 -1 0 Undefined
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.

Physical applications often lead to another type of problem, one in which the value of the
dependent variable y or its derivative is specified at two different points. Such conditions are
called boundary conditions to distinguish them from initial conditions that specify the value
of y and y’ at the same point. A differential equation and suitable boundary conditions form a
two-point boundary value problem. A typical example is the differential equation

Y+ p(x)y' +4q(x)y = g(x) 3)
with the boundary conditions

y(a) =y, y(B)=y. 4)
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Physical applications often lead to another type of problem, one in which the value of the Partial Differential

dependent variable y or its derivative is specified at two different points. Such conditions are )

7‘[ called boundary conditions to distinguish them from initial conditions that specify the value Eq uations and
of y and y’ at the same point. A differential equation and suitable boundary conditions form a Fourier Series

two-point boundary value problem. A typical example is the differential equation

y'+ p(x)y" +q(x)y = g(x) 3
with the boundary conditions

y(a) =y, y(B)=y. )

Eigenvalue Problems. Recall the matrix equation
AX = A\x (17)

that we discussed in Section 7.3. Equation (17) has the solution x = 0 for every value of
A, but for certain values of A, called eigenvalues, there are also nonzero solutions, called
eigenvectors. The situation is similar for boundary value problems.

Consider the problem consisting of the differential equation

y'+ Ay =0, (18)
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Casel: A > 0. Toavoid the frequent appearance of radical signs, it is convenient in this case
to let A = 12 and to rewrite equation (18) as

y' + puly =0. (20)

The characteristic polynomial equation for equation (20) is r?> + p? = 0 with roots
r = =iy, so the general solution is

y = cycos(px) + ¢y sin(px). (21)

Note that p is nonzero (since A > 0) and there is no loss of generality if we also assume that
p 1s positive. The first boundary condition requires that ¢; = 0, and then the second boundary
condition reduces to

cysin(pum) = 0. (22)
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Casell: A < 0. Inthis case we let A\ = —p2, so that equation (18) becomes

y" — puly =0. (25)

2

The characteristic equation for equation (25) is r> — p? = 0 with roots r = =y, so its

general solution can be written as

y = ¢ cosh( x) + ¢, sinh(px). (26)
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Caselll: A =0. Now equation (18) becomes
y' =0, (27)
and its general solution is

y =C1x + 0. (28)




CHAPTER 10

Partial Differential
Equations and
Fourier Series

.

In later sections of this chapter, we will often encounter the problem
y'+Ay=0, y(0)=0, y(L)=0, (29)

which differs from the problem (18), (19) only in that the second boundary condition is
imposed at an arbitrary point x = L rather than at x = . The solution process for A > 0 is
exactly the same as before, up to the step where the second boundary condition is applied. For
problem (29) this condition requires that

casin(pul) =0 (30)

rather than equation (22), as in the former case. Consequently, p L must be an integer multiple
of m,so up = nw /L, where n is a positive integer. Hence the eigenvalues and eigenfunctions

of problem (29) are given by

nln? nmwx

s yn(x)=sin(T), n=123,.... 31)

As usual, the eigenfunctions y,(x) are determined only up to an arbitrary multiplicative
constant. In the same way as for the problem (18), (19), you can show that the problem (29)
has no eigenvalues or eigenfunctions other than those in equation (31).

Ap =
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1.2 Fourier Series

Later in this chapter you will find that you can solve many important problems involving
partial differential equations, provided that you can express a given function as an infinite
sum of sines and/or cosines. In this and the following two sections we explain in detail how
this can be done. These trigonometric series are called Fourier series’; they are somewhat
analogous to Taylor series in that both types of series provide a means of expressing quite
complicated functions in terms of certain familiar elementary functions.

We begin with a series of the form

043 amon (")  bosin(")) 0




1.2 Fourier Series

Later in this chapter you will find that you can solve many important problems involving
partial differential equations, provided that you can express a given function as an infinite
sum of sines and/or cosines. In this and the following two sections we explain in detail how
this can be done. These trigonometric series are called Fourier series’; they are somewhat
analogous to Taylor series in that both types of series provide a means of expressing quite
complicated functions in terms of certain familiar elementary functions.

We begin with a series of the form

‘;—O-I-f:(am cos(mzx) + b, sm(’%)) (1)

m=1

On the set of points where the series (1) converges, it defines a function f, whose value at
each point is the sum of the series for that value of x. In this case the series (1) is said to be the
Fourier series for /. Our immediate goals are to determine what functions can be represented
as a sum of a Fourier series and to find some means of computing the coefficients in the series
corresponding to a given function. The first term in the series (1) is written as a;,/ 2 rather than
as ay to simplify a formula for the coefficients that we derive below. Besides their association
with the method of separation of variables and partial differential equations, Fourier series are
also useful in various other ways, such as in the analysis of mechanical or electrical systems
acted on by periodic external forces.

CHAPTER 10
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Periodicity of the Sine and Cosine Functions. To discuss Fourier series, it is necessary
to develop certain properties of the trigonometric functions sin(m=x /L) and cos(mmx /L),
where m is a positive integer. The first property is their periodic character. A function f is
said to be periodic with period 7 > 0 if the domain of f contains x + 7" whenever it contains
x, and if

f(x+T) = f(x) (2)

for every value of x. An example of a periodic function is shown in Figure 10.2.1. It follows
immediately from the definition that if 7" is a period of f, then 27 is also a period, and so
indeed is any integral multiple of 7. The smallest value of T for which equation (2) holds
is called the fundamental period of f. A constant function is a periodic function with an
arbitrary period but no fundamental period.
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Periodicity of the Sine and Cosine Functions. To discuss Fourier series, it is necessary
to develop certain properties of the trigonometric functions sin(mnx /L) and cos(mmx /L),
where m is a positive integer. The first property is their periodic character. A function f is
said to be periodic with period 7 > 0 if the domain of f contains x + 7" whenever it contains
x, and if

’ A periodic function of period T'.

f(x+T) = f(x) 2)

for every value of x. An example of a periodic function is shown in Figure 10.2.1. It follows
immediately from the definition that if 7 is a period of f, then 27T is also a period, and so
indeed is any integral multiple of 7. The smallest value of 7" for which equation (2) holds
is called the fundamental period of f. A constant function is a periodic function with an
arbitrary period but no fundamental period.
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m=1

If f and g are any two periodic functions with common period 7', then any linear
combination ¢, f + c,g is also periodic with period 7. To prove this statement, begin by
defining F(x) = ¢, f(x) + c,g(x); then, for any x,

F(x+T)=cf(x+T) +cg(x +T) =c f(x) +c28(x) = F(x). 3

Moreover, it can be shown that the sum of any finite number, or even the sum of a convergent
infinite series, of functions of period 7 is also periodic with period 7. In a similar way, you
can show that the product fg is periodic with period T'.

In particular, the functions sin(mmx/L) and cos(mmx/L), m = 1,2,3, ..., are
periodic with fundamental period 7 = 2L/m. To see this, recall that sinx and cosx
have fundamental period 27 and that sinax and cos ax have fundamental period 27 /cx.
If we choose a = mm /L, then the period T of sin(mmx/L) and cos(mmx/L) is given by
T =2rL/(mm) =2L/m.

Note also that, since every positive integral multiple of a period is also a period, each of
the functions sin(mnx /L) and cos(mm x /L) has the common period 2L.
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Orthogonal lines
] (1,2)
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Orthogonal vectors

] (1,2)
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Orthogonal vectors

Example 1:

Consider the following two vectors in 2D space:

=fo[2]

The dot product of these vectors is:
01'1)2:1}{'02:(1)(2)4-(2)( —1)=0

Because the dot product is zero, the angle between the vectors is 90° (cos 90° = 0).
Therefore, these two vectors are orthogonal.
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Orthogonality of the Sine and Cosine Functions. To describe a second essential property
of the functions sin(mmx /L) and cos(mm x /L), we generalize the concept of orthogonality
of vectors (see Section 7.2). The standard inner product (u«, v) of two real-valued functions
u and v on the interval @« < x < [ is defined by

3
(u,v) =/ u(x)v(x)dx. ()]

The functions u and v are said to be orthogonal on @ < x < 3 if their inner product is
zero—that is, if

g
/ u(x)v(x)dx = 0. (5)

A set of functions is said to be mutually orthogonal if each distinct pair of functions in the
set is orthogonal.
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Orthogonality of the Sine and Cosine Functions. To describe a second essential property
of the functions sin(mmx /L) and cos(mm x /L), we generalize the concept of orthogonality
of vectors (see Section 7.2). The standard inner product (u«, v) of two real-valued functions
u and v on the interval @« < x < [ is defined by

3
(u,v) =/ u(x)v(x)dx. ()]

The functions u and v are said to be orthogonal on @ < x < 3 if their inner product is
zero—that is, if

g
/ u(x)v(x)dx = 0. (5)

A set of functions is said to be mutually orthogonal if each distinct pair of functions in the
set is orthogonal.
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The functions sin(mmx /L) andcos(mmx /L), m = 1,2, ... form amutually orthogonal
set of functions on the interval —L < x < L. In fact, they satisfy the following orthogonality

relations:
/: cos("%) cos(n"lr‘—x)dx = {(l):, : i:: (6)
/—i cos(mzx) sin(mlr‘—x)dx =0, all m,n; (7

L, m=n.

[ ()i )ae= {7
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These results can be obtained by direct integration. For example, to derive equation (8),
note that

L L _
/ sin("m)sm(m)dx=l / (COS(M)_COS(M))dx
L L L 2/ L L

L

X m-—n m-+n

1L (sin((m —n)wx/L) _sin((m +n)7rx/L))
~L

=0

as long as m 4+ n and m — n are not zero. Since m and n are positive, m +n s 0. On the other
hand, if m — n = 0, then m = n, and the integral must be evaluated in a different way. In this case:

L

/ sin("7% ) sin("7 ) ax = [ ,. (sin("7%) Y ax
[, (e (7))
(= 2 0 (*L))

NN

-L
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The Euler-Fourier Formulas. Now let us suppose that a series of the form (1) converges
for all real numbers x on the interval —L < x < L, and let us call its sum f(x):

Tix) = 02—0 -l-i(am cos(mzx) + by sin(mzx)). (9)
m=1
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m=1

The Euler-Fourier Formulas. Now let us suppose that a series of the form (1) converges
for all real numbers x on the interval —L < x < L, and let us call its sum f(x):

Tix) = 02—0 -I-i(am cos(mzx) + by sin(mzx)). (9)
m=1

Multiply through by orthogonal functions...
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m=1

The Euler-Fourier Formulas. Now let us suppose that a series of the form (1) converges
for all real numbers x on the interval —L < x < L, and let us call its sum f(x):

Tix) = (12_0 +i(am cos(mzx) + by sin(mzx)). (9)
m=1

Multiply through by orthogonal functions...

Term by term integration...
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The Euler-Fourier Formulas. Now let us suppose that a series of the form (1) converges
for all real numbers x on the interval —L < x < L, and let us call its sum f(x):

00
f(x)= 2—0 +mZ-l(am cos(mzx) + by, sin(mzx)). (9)
L
Q)= %/_L J(x) cos(nZ—x)dx, B=0.1.200 (13)

By writing the constant term in equation (9) as a,/2, it is possible to compute all the a, from
equation (13). Otherwise, a separate formula, with an extra factor of 1/2, would have to be
used for ay.
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m=1

The Euler-Fourier Formulas. Now let us suppose that a series of the form (1) converges
for all real numbers x on the interval —L < x < L, and let us call its sum f(x):

00
f(x)= 02_0 +mz-:l(am cos(mzx) + by, sin(mzx)). (9)
L
Q)= %/.L J(x) cos(%)dx, B=0.1.200 (13)

By writing the constant term in equation (9) as a,/2, it is possible to compute all the a, from
equation (13). Otherwise, a separate formula, with an extra factor of 1/2, would have to be
used for ay.

1 [t . /nTX
by = Z/_L £(x) sm(T)dx, n=1,23,.... (14)
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1 L
3y = Z/-L f(x) cos(%)dx, n=002 00 (13)

1 L
by = Z/_L £(x) sin('%)dx, n=1,23,.... (14)
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1 L p— Fourier Series
3y = Z/-L FEx) cos(T)dx, B=0.1.2 .. (13)
by = 1/L £(x) sin(m)dx n=1,273 (14)
n — L . L L] T Ay Ly Ty e
EXAMPLE 1

Assume that there is a Fourier series converging to the function f defined by

—-x, =—2=<x<0,
f(x)—{ X, 0<x< 2;

(15)
f(x+4) = f(x).

Determine the coefficients in this Fourier series.
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1.2 Fourier Series

1 L
e Z/_L £(x) cos('%)dx, n=0,12, ....

1 L
b = 7 /_L £(x) sin('%)dx, n=1,23, ..
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EXAMPLE 1

Assume that there is a Fourier series converging to the function f defined by

-x, =2<x<0,
f(x)—{ X, 0<x< 2

(15)
f(x+4) = f(x).

Determine the coefficients in this Fourier series.

-6 -4 -2

m The triangular wave in Example 1.
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m The triangular wave in Example 1. Ertirine Carine

1, ik nmx
an —— f( X ) COS{ — dx 2 n = 0, l, 2, e e Assume that there is a Fourier series converging to the function f defined by

L -L L -x, -2=x<0,

1 & nmx f(x)={ voEed "
bn -— Z f(x) Sln(T)dx9 n = 19 23 3’ .. f(x+4) = f(x).

~L Determine the coefficients in this Fourier series.

T'his function represents a triangular wave (see Figure 10.2.2) and is periodic with period 4. Thus the
Fourier series has the form

£(x) = %0 +Z(a,,, cos(m;x) + by sin(m;x)), (16)

where the coefficients are computed from equations (13) and (14) with L = 2. Substituting for f(x)
in equation (13) with m = 0, we have

L i 1 [?
ay = = (=x)dx + = xdx =14+1=2. (17)
2 -2 2 0

For m > 0, equation (13) yields

i Y
am=§/_2(—x)oos(m;rx)dx+§/; xcos(m;x)dx.
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m The triangular wave in Example 1. Crtirine Cavine
| nmx
an = Z/ f(x) COS(T)dx' n = O, 1, 2, RN oc a0 Assume that there is a Fourier series converging to the function f defined by
-L

—-x, =-2=x<0,
f(x)_{ X, 0<x< 2

| . (NTX
b = L /;L f(x) Sm(T)dx’ n=123.. fx+4) = F(x). 4

Determine the coefficients in this Fourier series.

1 0
am=§/(—X)OOS(m;x)dx /U'd’U:UU—/U°dU
-2

where: u

dv

—X

cos ( MTL )
2

— 1/O — X COS (mﬂx)dac— —ixsin (mwx) —
2 ) 2 N mm 2
1 0
~ 3 (/_2—sin(m§x) da:) :
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1.2 Fourier Series Partial Differential
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m The triangular wave in Example 1. Crtirine Cavine
| nmx
an = Z/ f(x) COS(T)dx' n = O, 1, 2, RN oc a0 Assume that there is a Fourier series converging to the function f defined by
-L

—-x, =-2=x<0,
f(x)_{ X, 0<x< 2

| . (NTX
b = L /;L f(x) Sm(T)dx’ n=123.. fx+4) = F(x). 4

Determine the coefficients in this Fourier series.

1/0 (m'lrx)
Qm = — (—x) cos dx
2 ) 2 /u-dvzuv—/v-du

where: u

dv

—X

( mmx )
CoS | ——
2

1/0 MTx ( 2 . /mTx
— — —:ccos( )da: ——:csm( ) — ...
2 J_o 2 mm 2
1 0
— — (/ sin (mmv) dx).
2 9 2
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1.2  Fourier Series Partial Differential
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-6 -4 -2 | 2 4 6 x X -
m The triangular wave in Example 1. Ertirine Carine
Y nmx
an = Z f( X ) COS T d > o n = 0 5 l 2 2 iR Assume that there is a Fourier series converging to the function f defined by
-L -x, =2 0,
1 [* nmXx f“):{ o ozec
I inl —— — T (15)
bn -_— L / f(x) Sln( L )dx, n -_— 1, 2, 3’ . . f(x+4)=f(x)_
~L Determine the coefficients in this Fourier series.

These integrals can be evaluated through integration by parts, with the result that

() () o+ () commr - (52 )
=—|\—-l—) +| — | cos(mm) + | — ) cos(mm) — | —
2 mm mm mir mir

(cos(mm) —1), m=1, 2, ...

~ (mm)?

8
E— (m7r)2 '
0, m even.

m odd,
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Partial Differential

m The triangular wave in Example 1.

1 L
a, = Z/.L £(x) cos(nZ—x)dx, n=0,12, ....

1 L
b = 7 /_L £(x) sin(’?)dx, n=1,273, ..

Finally, from equation (14), it follows in a similar way that

b, =0,

D B S— Equations and

Fourier Series
EXAMPLE 1

m=1,2,....

Assume that there is a Fourier series converging to the function f defined by

—-x, —-2=x<0,
f(x)_{ x, 0<x<?2

(15)
fx+4) = f(0).

Determine the coefficients in this Fourier series.

(19)

By substituting the coefficients from equations (17), (18), and (19) in the series (16), we obtain the

Fourier series for f:

8 mX 1 3mx
f(X) =1- E(COS(T) + §COS(T) +

8 — 1 (2n — D 7x
=1—- — —
2 z; (2n — 1)2°°S( 2

— COS 57r_x +...
52 2

(20)
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104 Even and Odd Functions

Before looking at further examples of Fourier series, it is useful to distinguish two classes
of functions for which the Euler-Fourier formulas can be simplified. These are even and odd
functions, which are characterized geometrically by the property of symmetry with respect to
the y-axis and with respect to the origin, respectively (see Figure 10.4.1).
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ver : =2k, Vk € Z,

Odd num

ver : =2-k+1, Vk € Z.
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Rules for Even and Odd Numbers

.

Addition Examples Subtraction Examples
even + even = even 2+2=4 even - even = even 4-2=2
odd + odd = even 1+1=2 odd - odd = even 1-3=-2
even + odd = odd 2+1=3 even - odd = odd 2-3=-1
odd + even = odd 1+2=3 odd - even = odd 3-2=1
Multiplication Examples Division Examples
even X even = even 2x2=4 (only true if the quotient
odd x odd = odd 1x1=1 i1s a whole number)
even x odd = even 2x1=2 even + odd = even 6+3=2
odd x even = even 1x2=2 odd + odd = odd 9+3=3
even + even = odd or 6+2=3
Even number : =2 -k, Vk € Z, even + even = even 4+2=2

odd = even = not a
whole number

Odd number : =2-k+ 1, Vk € Z.
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Analytically, f is an even function if its domain contains the point —x whenever it
contains the point x, and if

f(=x) = f(x) (1)

for each x in the domain of f. Similarly, f is an odd function if its domain contains —x
whenever it contains x, and if

f(—=x) =—f(x) 2)

for each x in the domain of f. Examples of even functions are 1, x?%, cos(nx), |x|, cosh(nx),
and x?". The functions x, x>, sin(nx), sinh(nx), and x?**! are examples of odd functions.
Note that according to equation (2), f(0) must be zero if f is an odd function whose domain
contains the origin. Most functions are neither even nor odd; an example is e*. Only one
function, f identically zero, is both even and odd.
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Elementary properties of even and odd functions include the following:®

1. The sum (difference) and product (quotient) of two even functions are even.
2. The sum (difference) of two odd functions is odd; the product (quotient) of two odd
functions is even.

3. The sum (difference) of an odd function and an even function is neither even nor odd; the
product (quotient) of an odd function and an even function is odd.
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Elementary properties of even and odd functions include the following:®

1. The sum (difference) and product (quotient) of two even functions are even.

2. The sum (difference) of two odd functions is odd; the product (quotient) of two odd
functions is even.

3. The sum (difference) of an odd function and an even function is neither even nor odd; the
product (quotient) of an odd function and an even function is odd.

The proofs of all these assertions are simple and follow directly from the definitions. For
example, if both f; and f; are odd, and if g(x) = f,(x) + f>(x), then

g(—x) = fi(—=x) + fa(—x) = — fi(x) — fa(x)
= —(fi(x) + fo(x)) = —g(x), 3)
so f1 4+ f> is an odd function also. Similarly, if A(x) = fi(x) f2(x), then
h(—x) = fi(=x) fo(—x) = (= fi(x)) (= fo(x)) = fi(x) fo(x) = h(x), 4)

so that f; f> is even.
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10.4

Even and Odd Functions

4. If f is an even function, then

5. If f is an odd function, then

L L
/ f(x)dx = 2/ f(x)dx.
~L 0

L
/ f(x)dx =0.
-L

CHAPTER 10
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&)

(6)
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Cosine Series. Suppose that f and f' are piecewise continuous on —L < x < L and that
f 1s an even periodic function with period 2L. Then it follows from properties 1 and 3 that
f(x) cos(nmx/L) is even and f(x) sin(nmx /L) is odd. As a consequence of equations (5)
and (6), the Fourier coefficients of f are then given by

_1’*() n7rxd_2L() nmxy =15 1.5 _
a,,_L/—focos(L)x_LAfxcos(L)x, =12 ...:

b, =1, /3 [ S

(7

Thus f has the Fourier series
a nmx
xX) =— a,cos{ — ).
10 =2+ 3 nes("F)

In other words, the Fourier series of any even function consists only of the even trigonometric
functions cos(nmx /L) and the constant term; it is natural to call such a series a Fourier
cosine series. From a computational point of view, observe that only the coefficients a,, for
n =20,1,2, ..., need to be calculated from the integral formula (7). Each of the b,, for

n = 1,2, ..., is automatically zero for any even function and so does not need to be
calculated by integration.
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Sine Series. Suppose that f and f' are piecewise continuous on —L < x < L and that
f 1s an odd periodic function of period 2L. Then it follows from Properties 2 and 3 that
f(x) cos(nmx/L) is odd and f(x) sin(nmwx/L) is even. Thus, from equations (5) and (6),
the Fourier coefficients of f are

a, =0, n=012, ...,

1 [t . /NTX 2 [E . /nTX (8)
b, = Z./—L f(x) sm(T)dx = Z/o f(x) sm(T)dx, n=12, ...,

and the Fourier series for f is
o0
nmx
- S bn(").
f(x) 2 sin 7

Thus the Fourier series for any odd function consists only of the odd trigonometric functions
sin(nmx/L); such a series is called a Fourier sine series. Again observe that only half of the
coefficients need to be calculated by integration, since each a,, forn =0, 1,2, ..., is zero
for any odd function.
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Example 1:

Let f(x) =x,—L < x < L,and let f(—L) = f(L) = 0. Let f be defined elsewhere so that it
is periodic of period 2L. The function defined in this manner is known as a sawtooth wave. Graph
three periods of y = f(x). Find the Fourier series for this function.




Solution: CHAPTER 10

10.4 The graph of y = f(x) on [—L, L] and one period to the left and one period to the right is shown tial
in Figure 10.4.2. [T 1a

m The sawtooth wave in Example 1.

Since f is an odd function, its Fourier coefficients are, according to equation (8),

Il
i




Solution: CHAPTER 10

The graph of y = f(x) on [—L, L] and one period to the left and one period to the right is shown
in Figure 10.4.2.

10.4
ntial

d
YA ;

m The sawtooth wave in Example 1.

Hence the Fourier series for f, the sawtooth wave, is
2L = (=)™ snmx
f0 = 233 0 n(152)
n=

22 (a7 < Lan(32) 4 (352 .
o L 3 L 5 L '
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In solving problems in differential equations, it is often useful to expand in a Fourier series
of period 2L a function f originally defined only on the interval [0, L]. As indicated previously
for the function f(x) = x, with L = 2, several alternatives are available. Explicitly, we can

1. Define a function g of period 2L so that

J(x), O<x<Ul,
g(x) =
f(=x), -L<x<0O.

(10)

The function g is thus the even periodic extension of f.Its Fourier series, which is a cosine
series, represents f on [0, L].
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In solving problems in differential equations, it is often useful to expand in a Fourier series
of period 2L a function f originally defined only on the interval [0, L]. Asindicated previously
for the function f(x) = x, with L = 2, several alternatives are available. Explicitly, we can

2. Define a function & of period 2L so that
Flx), Ol
h(x) = 0, =11 (11)
—f(—=x), -L<x<0.

The function A is thus the odd periodic extension of f. Its Fourier series, which is a sine
series, also represents f on (0, L).
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In solving problems in differential equations, it is often useful to expand in a Fourier series
of period 2L a function f originally defined only on the interval [0, L]. As indicated previously
for the function f(x) = x, with L = 2, several alternatives are available. Explicitly, we can

.

3. Define a function k of period 2L so that
k(x) = f(x), 0=<x=<L, (12)

and let k(x) be defined for (—L, 0) in any way consistent with the conditions of Theorem
10.3.1. Sometimes it is convenient to define k(x) to be zero for —L < x < 0. The
Fourier series for k, which involves both sine and cosine terms, also represents f on [0, L],
regardless of the manner in which k(x) is defined in (—L, 0). Thus there are infinitely
many such series, all of which converge to f(x) in the original interval.
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f(x)={l—x, 0<x<l, (13)

Suppose that

0, l<x<2

As indicated previously, we can represent f either by a cosine series or by a sine series. Sketch the
graph of three periods of the sum of each of these series for —6 < x < 6.

Solution:

In this example, L = 2, so the cosine series for f converges to the even periodic extension of f of
period 4, whose graph is sketched in Figure 10.4.4.

yl
1
1%\1/\1/Nl=
-5-4-2_1_246x

m Even periodic extension of f(x) given by equation (13).

Similarly, the sine series for f converges to the odd periodic extension of f of period 4. The
graph of this function is shown in Figure 10.4.5.

3

111\4111,\1|11\||:
-5\4-2 2\4 6 x

0 -1%- o)

m Odd periodic extension of f(x) given by equation (13).
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Study hard, good luck, meet your academic goals.







