MAT112 -Mr. José Pabon
Recitation will start soon.
We will pass this course with a great grade
& meet our academic and professional
goals!
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We will be courteous, civil to
each other.
NO SUCH THING AS AN

OBVIOUS QUESTION
ask ask ask any doubt to clear up
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FIGURE 11.1 The curve or path tracad
by a particls moving in the x-plane iz not
always the graph of a function or single
aquation.

DEFINITION If x and ¥ arc given as functions

= fiel, ¥ = g

over an interval I of f-values, then the set of points (c, ¥) = (fif), gif)) defined by
these equations is a parametric curve. The equations are parametric equatbons
for the curve.

EXAMPLE 2 Sketch the curve defined by the parametric equations

=i ¥=r+1, —y o

Solution We make a table of values (Table 11.2), plot the points (x, ¥), and daw a
smooth curve through them (Figure 11.3). We think of the curve as the path that a particlke
moves along the curve in the direction of the amows. Although the time inervals in the
table are equal, the consecutive points plotted along the curve are not at egqual arc length
distances. The reason for this is that the particle slows down as it gets nearer to the y-axis
along the lower branch of the curve as | increases, and then speeds up afier reaching the
y-axis at {0, 1) and moving along the upper branch. Since the interval of values for § is all
real numbers, there is no initial point and no erminal point for the curve,

TAELE 11.2 Values of x = ¢! and

¥ =t + 1 for selected values of 1. ¥
1=3
f x ¥ 1=1 " (5 4)
E=1 (4.5
-3 9 -2 iy
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-1 | ] 1= -1 e, (4 -1
= — = 9, T
0 0 I 1 e _[__.___
I I 2 e
2 4 i FIGURE 11.3 The curve given by
3 q 4 the paramelric equations x = % and

¥ =1 + | (Example 2}.
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FIGURE 11.5 The equations x = %/t
and y = t and the interval t = 0 describe
the path of a particle that traces the
right-hand half of the parabola y = x*
(Example 4).

EXAMPLE 4 The position P(x, ¥) of a particle moving in the xy-plane is given by the
equations and parameter interval

x=Vi, y=t t=0.
Identify the path traced by the particle and describe the motion.

Solution We try to identify the path by eliminating f between the equations x = ' and
v = {, which might produce a re-cognizable algebraic relation between x and y. We find
that

y=1= [ﬁ}1=f’-.

Thus, the particle’s position coordinates satisfy the equation y = x°, so the particle moves
along the parabola y = x7.

It would be a mistake, however, to conclude that the particle’s path is the entire para-
bola y = x%; it is only half the parabola. The particle’s x-coordinate is never negative.
The particle starts at (0, 0) when f = 0 and rises into the first quadrant as f increases
(Figure 11.5). The parameter interval is [0, oc) and there is no terminal point. |



TABLE 11.3 Valuesof x = ¢t + (1/£)
and y = f — (1) for selected

values of t.
f 1/t x ¥
0.1 10.0 10.1 —-9.9
0.2 5.0 52 —4.8
0.4 2.5 2.9 -2.1
1.0 1.0 2.0 0.0
2.0 0.5 2.5 1.5
5.0 0.2 52 4.8
10.0 0.1 10.1 9.9
.}'
1ok =10
(10.1, 9.9)

(1001, —%.9)
t=10L1

FIGURE 11.T The curve for
x=t+i(l/ny=t—(1/01 =0
in Example 7. (The part shown is for
01 =t=10)

EXAMPLE 7 Sketch and identify the path traced by the point Pix, y) if

=0

Solution We make a brief table of values in Table 11.3, plot the points, and draw a
smooth curve through them, as we did in Example 1. Next we eliminate the parameter §
from the equations. The procedure is more complicated than in Example 2. Taking the dif-
ference between x and y as given by the parametric equations, we find that

e-y=(1+8)-(-1)-2

If we add the two parametric equations, we pet

S B

We can then eliminate the parameter { by multiplying these last equations together:

x —yix + y) = (%)[21} =4,

Expanding the expression on the left-hand side, we obtain a standard equation for a hyper-
bola (reviewed in Section 11.6):

-y =4 ()

Thus the coordinates of all the points P(x, ¥) described by the parametric equations sat-
isfy Equation (1). However, Equation (1) does not require that the x-coordinate be posi-
tive. So there are points (x, v) on the hyperbola that do not satisfy the parametric equation
x =1+ (1/f), 1 = 0.In fact, the parametric equations do not yield any points on the left
branch of the hyperbola given by Equation (1), points where the x-coordinate would be
negative. For small positive values of r, the path lies in the fourth quadrant and rises into
the first quadrant as f increases, crossing the x-axis when 1= 1 (see Figure 11.7).
The parameter domain is (0, oo) and there is no starting point and no terminal point for
the path. H



Finding Cartesian from Parametric Equations

Exercises 1-18 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by
finding a Cartesian equation for it. Graph the Cartesian equation. (The
graphs will vary with the equation used.) Indicate the portion of the
graph traced by the particle and the direction of motion.

13.x=t, y=VI-F -1=1=0

4. x=%1r+1, y=+1 =0

15 x =sec’t — 1, y=tant, —w/2 <t <72
16, x = —sect, y=tant, —w/2 <1< 7/2
17. x = —cosht, y = sinht, —eo <1 < o0

18. x = 2sinht, y= 2cosht, —oo <1< oo



Finding Cartesian from Parametric Equations

Exercises 1-18 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by
finding a Cartesian equation for it. Graph the Cartesian equation. (The
graphs will vary with the equation used.) Indicate the portion of the
graph traced by the particle and the direction of motion.

.x=t y=VI—-f£ -1=1r=0 )
M. x=Vi+l y=+vi t=0 17. x=-—cosht, y=smh [,—eo <] <oo

15 x =sec’t — 1, y=tant, —w/2 <t <72

16, x = —sect, y=tant, —w/2 <1< 72 — Cﬂghz f— Slnhz f = l — xZ _ }}2

17. x = —cosht, y = sinht, —eo <1 < o0
18. x = 2sinht, y= 2cosht, —oo <1< oo .
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Finding Cartesian from Parametric Equations

Exercises 1-18 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by
finding a Cartesian equation for it. Graph the Cartesian equation. (The
graphs will vary with the equation used.) Indicate the portion of the
graph traced by the particle and the direction of motion.

B.x=1 yv=WN1—-r, -1=1t=10 _ .
4. x=Vitl, y=vi 1=0 18. I=281111’1T,_}»‘=ZCDShT,—m{l‘{m
15 x =sec’t — 1, y=tant, —w/2 <t <72

16. x = —sect, v = , —wf2=t= a2 2 - 2 2 2
17. .1'=—CD'5]TH.}T =m-111':h!, —f_'x_- {lrf if;:; :> 4 CDSh t_4 Slnh r = 4 :> J} —X — 4

]
18. x = 2sinht, y= 2cosht, —oo <1< oo

b J yz- Kz .y |




Distance Using Parametric Equations

49. Find the point on the parabola x =, v = %, —oo < 1 < oo,
closest to the point (2, 1/2). (Hint: Minimize the square of the
distance as a function of 1.)



Distance Using Parametric Equations

49. Find the point on the parabola x =, v = %, —oo < 1 < oo,
closest to the point (2, 1/2). (Hint: Minimize the square of the
distance as a function of 1.)

2 2 2
49, D=\/(x—2)2+(y—%) :>D2=(x—2)2+(y—%) =(r—2)2+(r2—%) =D? = —4r+1l



Distance Using Parametric Equations

49. Find the point on the parabola x =, v = %, —oo < 1 < oo,
closest to the point (2, 1/2). (Hint: Minimize the square of the
distance as a function of 1)

2 2 2
49. D=\/(x—2)2+(y—l) = D* = (x=2)" +(r-1) =(r—2)2+(r2—l) =D =1 —4r+ 17

2 2
d(Dz)
dr

— =4t —4=0—=t=1. The second derivative is always positive for t# 0 =7 =1 gives a local

minimum for D’ (and hence D) which 1s an absolute minimum since it 1s the only extremum — the closest
point on the parabola 1s (1, 1).



Tangentis and Areas

A parametrized curve x = fif) and y = gif) is differentiable at 1 if f and g are differen-
tiable at f. At a point on a differentiable parametrized curve where y is also a differentiable
function of x, the derivatives dy/dt, dx/dr, and dy/dx are related by the Chain Rule:

dy _dy dx

dr — dv dt
If dx/dt + 0, we may divide both sides of this equation by dx/dr to solve for dv/dx.

Parametric Formula for dy/dx
If all three derivatives exist and dx/dt # 0, then

dy dy/dt
dv  dv/dt

(1

If parametric equations define y as a twice-differentiable function of x, we can apply
Equation (1) to the function dy/dx = y' to calculate d”y/dx* as a function of I:

dy g, dy'/dt
w2 &Y " wmar

Eq. (1) with ¥' in place of ¥

Parametric Formula for d”y/dx*
If the equations x = f{f), y = g(f) define y as a twice-differentiable function of
x, then at any point where dx/dt # 0 and v’ = dy/dx,

d’y  dy'/di

P dx/dt” )




¥ EXAMPLE 3 Find the area enclosed by the astroid (Figure 11.15)

x=cosf, y=sin'f, 0=it=2m

Solution By symmetry, the enclosed area is 4 times the area beneath the curve in the
first quadrant where 0 = r = /2. We can apply the definite integral formula for area
studied in Chapter 5, using substitution to express the curve and differential dx in terms of
the parameter f. Thus,

1
4 times area under ¥
A=4 f y dx ' -
0

fromx = 0tox |

1L

w2
o =4 (sin? H)(3 cos? ¢ sin 1) dt Substitution for y and dx
FIGURE 11.15 The astroid in 0
Example 3.
w2 3
I —cos2t\" (1 + cos 24 . | — cos 2°
=12f ( = )( < )m sin [—“|
0
3 w2
= E_/ (1 —2cos2t + cos2 201 + cos 20) dt Expand squared term.
0
3 w2
=3 f (1 — cos 2t — cos” 2t + cos* 2f) df Multiply terms.
0
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DEFINITION If a curve C is defined parametrically by x = f(f) and v = g(i),
a=1f=b where f' and g" are continuous and not simultaneously zero on

[a, b], and C is traversed exactly once as f increases from f = a to t = b, then
the length of C is the definite integral

b
L =f VIFI(]? + [g')] dr

EXAMPLE 4 Using the definition, find the length of the circle of radius r defined
parametrically by

x=rcost and ¥ = rsinf, 0=1t=2mw

Solution As f varies from 0 to 24, the circle is traversed exactly once, so the circumfer-

ence is
| dx\? dvy?
i [ ET - G
o \, dt dt
We find
i rsinf, a r Ccos
and

dr\’
= +
%)

Therefore, the total arc length is

v\ _ 5o e
= + - = -
(d:) reisin-i cos=1) r

y -
W

27 2
L=f ‘u’?dﬁ=r[f} = 2ar. ]
1]

0



Circle

X =cost
¥y=1+sint
D=I|=2r =

>t

-

FIGURE 11.19 In Example 9 we
calculate the area of the surface of
revolution swept out by this
parametrized curve.

Area of Surface of Revolution for Parametrized Curves

If a smooth curve x = f(i),y = g{t),a =t = b, is traversed exactly once as f
increases from a to b, then the areas of the surfaces penerated by revolving the
curve about the coordinate axes are as follows.

1. Revolution about the x-axis (y = 0):

N O

2. Revolution about the y-axis (x = 0):

5 - f ymx (&Y + (3) a O]

As with length, we can calculate surface area from any convenient parametrization that
meets the stated criteria.

EXAMPLE 9 The standard parametrization of the circle of radius 1 centered at the
point (0, 1) in the xy-plane is

X = cost, vy=1+sintf 0=t= 2.

Use this parametrization to find the area of the surface swept out by revolving the circle
about the x-axis (Figure 11.19).

Solution We evaluate the formula

b ) 7 . : .
dx dy Eq. (5) for revolution about the
5= f 27?)’“(@) + (E) dt veaxissy = 1 + sint = 0
a

2w
= f 2wl + sinf) Vi—sin)? + (cosi)? dt
[i]
1

I
= 2 (1 + sinf)df
i}
1w
=2-'rr|:.! —co\sr] = 472, ]

a



Tangents to Parametrized Curves

In Exercises 1-14, find an equation for the line tangent to the curve at
the point defined by the given value of . Also, find the value of
d*y/dx” at this point.

1. x =2cost, y=2sint, t=w/4
2 x=simn2w, y=coslwt, t=—1/6
3 x=4sint, y=2cost, t=w/4
4. x =cost, y=V3cost, t=27/3
S5.x=t y=V1 t=1/4

6. x =sec’t — |, y=tant, t=-w/4
7. x =sect, y=tant, t =w/6
Bx=—Vi+1 y=V3 1=3

9. x=2043, y=1 1=—1

0. x=1/t, y=-2+It, t=1
Il.x=r—sint, y=1—cost, t=w/3
12. x = cost, y= 1 +sint, t=w/2
Box=—— y=—— 1=2

4 x=1+¢ y=1-¢€ =10



Tangents to Parametrized Curves
In Exercises 1-14, find an equation for the line tangent to the curve at
the point defined by the given value of . Also, find the value of
d*y/dx” at this point.
1. x =2cost, y=2sint, t=w/4
X =sin2wt, y=cosl2w, t=-—1/6

2
3 x=4sint, y=2cost, t=w/4

x=27+3 y=1" r=-1

0. x=1/t, y=-2+Int, t=1
Il.x=r—sint, y=1—cost, t=w/3
12. x = cost, y= 1 +sint, t=w/2
Box=— y=—— (=2
Mx=t+¢, yv=1—-¢& 1=0

12. r=%:>x=c05%=0, y=1+sin

T _9.

2

]

= = = —cot £ =0; tangent line1s y =2;

GFJ:' T 2

cosft
. =—Cotr
—smi
2
3 d~y
=—csc = -



Tangents to Parametrized Curves
In Exercises 1-14, find an equation for the line tangent to the curve at
the point defined by the given value of . Also, find the value of
d*y/dx” at this point.

1. x =2cost, y=2sint, t=w/4

2 x=sin2w, yv=cos2wt, t=-—1/6

3 x=4sint, y=2cost, t=w/4

4. x =cost, y=V3cost, t=27/3

S5.x=t y=V1 t=1/4

6. x =sec’t — |, y=tant, t=—-w/4

T.x =sect, y=tant, = 7/6

Bx=—-Vi+1, y=+3, t=3

9.x=20+3 y=1" r=-1

0. x=1/t, y=-2+Int, t=

Il.x=r—sint, y=1—cost, t=w/3

12. x = cost, y= 1 +sint, t=w/2

]3.x=j_'1_l y=ro 1=2

b x=1t+¢, yv=1—-¢&, t=10

A — dy — dy t+1)” dy 241)* L.

3. t=2=x=;b=1 y=2-p a&_ 1 U _ 1 ¢ _{ }2 = = =(—]2=9; tangent line 1is
2+1 3 2-1 dt (t+1) dt (1-1) dx (1-1) dx =7 (2-1)

Ay _ A d*y _ A(r+1)] _ d*y| 4+’

=108
dt (t-1)° d? (1)’ dx? (2-1)°

y=9x—1;
=2



Pir.

Origin { pole)

(]

x
Initial ray

FIGURE 11.20 To define polar coordi-
nates for the plane, we start with an origin,
called the pole, and an initial ray.

FIGURE 11.21 Polar coordinates are not
unigue.

=mj6
Tal6
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FIGURE 11.22 Polar coordinaies can
have negative r-values.

(-3
(3

T /6

Imitial ray o

5w i6

FIGURE 11.23 The point P(2, = /6)
has infinitely many polar coordinale pairs
(Example 1)

r=a

Definition of Polar Coordinates

To define polar coordinates, we first fix an origin @ (called the pole) and an initial ray
from O (Figure 11.20). Usually the positive x-axis is chosen as the initial ray. Then each
point P can be located by assigning to it a polar coordinate pair (r, #) in which r gives
the directed distance from @ to P and 8 pives the directed angle from the initial ray to ray
OP. So we label the point P as

Pir, 6)
™,

Dircied angle from
initial ray to OF

Directed distance
from € to P

As in trigonometry, # is positive when measured counterclockwise and negative when
measured clockwise. The angle associated with a given point is not unique. While a point
in the plane has just one pair of Cartesian coordinates, it has infinitely many pairs of polar
coordinates. For instance, the point 2 units from the origin along the ray # = /6 has
polar coordinates r = 2, # = #/6. It also has coordinates r = 2,8 = —11a /6 (Figure
11.21). In some situations we allow r to be negative. That is why we use directed distance
in defining P(r. #). The point P(2, T+ /6) can be reached by tuming 7+ /6 radians coun-
terclockwise from the initial ray and going forward 2 units (Figure 11.22). It can also be
reached by tumning 7 /6 radians counterclockwise from the initial ray and going backward
2 units. So the point also has polar coordinates r = —2,8 = ¢ /6.
EXAMPLE 1 Find all the polar coordinates of the point P(2, 7 /6).
Solution  We sketch the initial ray of the coordinate system, draw the ray from the origin
that makes an angle of /6 radians with the initial ray, and mark the point (2, 7/6)
(Figure 11.23). We then find the angles for the other coordinate pairs of P in which r = 2
and r = —2.

For r = 2, the complete list of angles is

T 5

% —— % 2y, —?1‘471- —?i(m,

The corresponding coordinate pairs of P are
(2,% + 2m-r), n=0,+1, +2,.
and
(—2,—5%+ Zm-r), n=10 =1, +2 ...

When n = 0, the formulas give (2, 7/6) and (=2, —57/6). When n = 1, they give
(2, 137 /6) and (-2, 77 /6), and so on. [ |

V ¥



Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins
together and let the initial polar ray be the positive x-axis. The ray 8 = #»/2,r = 0,
becomes the positive y-axis (Figure 11.26). The two coordinate systems are then related
by the following equations.

Equations Relating Polar and Cartesian Coordinates

|

X =rcosé, ¥ =rsind, r=xt+ 9, tan 8 =

The first two of these equations uniguely determine the Cartesian coordinates x and y
given the polar coordinates r and @. On the other hand, if x and y are given, the third equa-
tion gives two possible choices for r (a posiive and a negative wvalue). For each
ix, ¥) # (0, 0), there is a unique # = [0, 25} satisfying the first two equations, each then
giving a polar coordinate representation of the Cartesian point (x, v). The other polar coor-
dinate representations for the point can be determined from these two, as in Example 1.

EXAMPLE 4  Here are some plane curves expressed in terms of both polar coordi-
nate and Cartesian coordinate equations.

Polar eguation Cartesian equivalent
reosf =12 x=2
ricosfsind = 4 xy=4
r?cos’8 — r*sin’d = | P -yi=1
r=1+ Zrcosé P-4 —-1=0
r=1—cos# Y+ 2+ 2 -y =0

Some curves are more simply expressed with polar coordinates; others are not. [ |



Graphing Sats of Polar Coordinate Points
(raph the sets of points whose polar coordinates satisfy the equations
and inequalities in Exercises 11-26.

M.r=2 120=r=2
B.r=1 M 1=r=2
15.0=8=x/6, r=0 16.8=2x/3, r=-2
17.0=a/3, —1l=r=3 18 8= I11x/4. r=—|
19.0=a/2, r=10 20.8=m/2, r=0



Graphing Sats of Polar Coordinate Points
Graph the sets of points whose polar coordinates satisfy the equations
and inequalities in Exercises 11-26.

.r=2 12 0=r=2
13.r=1 4. 1=r=2
15.0=8=x/6, r=10 16. 8 =2w/3, r=-12
17. 8 =x/3, -1l=r=3 18. & = 1= /4, = -1
1. 8==/2, r=10 W e==/2, r=10
11.
y
A
2 r=2
> X
0 2
14.
y

k2.

16.

-1
-2




Polar to Cartaesian Equations
Replace the polar equations in Exercises 27-32 with equivalent
Canesian equations. Then descnbe or wdentify the graph.

Xl.rcosd =2 28. ranéd = —|

29. ramnéd =10 3. rcosd =10

M. r=4cc@ 32 r=—3sech

A rcosd +rsnf = | M. ranéd =rcos8

35 =1 36. r* = 4rsind

I.r=— S 38. risin28 = 2
sin@ — 2cos @

M. r=colfcsca 40. r = 41an & sec 8

M. r = cscde==? 42. rsin® = Inr + Incos @

43. r’ + 2rfcos@sind =1 44, cos’@ = sin’é

45. r’ = —4rcos @ 46. r* = —6rsin @

4. r=8zn# 48. r=3cos #

49. r=2cos8 + 2sn# 0. r=2co58 — sin @

6

ﬂ.rsin(l%—ﬂ) =3

51. rsin (ﬂ' + E) =3



Polar to Cartesian Equations
Replace the polar eguations in Exercises 27-52 with equivalent
Cartesian equations. Then describe or identify the sraph.

. roosd =12 28, rsind = —1

29. rsing =0 30, reos@ =10

M.r=4cscd 32 r=—3sech

3. rcos8 +rsing =1 3. rsin® =rcoséd

35 rl=1 36. rl = 4rsind

E.r=m 38, F:S:i'l'lzﬂ=2

M. r=ootfcscd 40, r = 4tan & sec @

4.1 = csc e =h 42 rsind = Inr + Incos

43, r* 4+ 2rfcos@sind = 1 44, cos?d = sin®d

45. r' = —drcos @ 46. r’ = —6rsind

47.r = 8sind 48, r=3dcos#

9. r=2cosd + 2sin# 50, r=2cos# — sin @
. m

51. rsm(9+ E.) =2

52. rsin(zTﬂ- - Gl) =5

41. r=(csc ) Y = 1 sin@=e"Y = y =" eraph of the natural exponential function



* (Questions?

We're here to help.
Remember the tutoring center is
open!

Study hard, best of luck!

Be well stay safe & healthy.



