3. The solid lies between planes perpendicular to the x-axis at
x =—1 and x = 1. The cross-sections perpendicular to the
x-axis between these planes are squares whose bases run from the

. A .. -
semicircle y = —V'1 — x? to the semicircle y = V1 — x2.

18. About the v-axis Volumes by the Disk Method
' In Exe

1 rcises 17-20, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.
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Trngonometry Formulas

Definitions and Fundameantal Identities

Sine: sinfl = % = c;__ ] ‘h ¥
Cosine: cos = % = ﬁ g
Tangent: tan # = % = ﬁ "
Idantities

sin{—f#) = —sin @, cos(—¥ = cos @
sin®@ + cos @ =1, sec®@ =1+ wn’f, =@ =1+ cot® @
sin 28 = 2sin @ cos @, cos 280 = cos?@ — sin® @

cos” B = —11—“3# 5in2E=—]_ing
sinfd + B) = sinAcos B + cos A sin B
sinfA — H) = sinA cos B — cos A sin B
cos{d + B) = cos A cos B — sin A sin 8
cos{Ad — H) = cos A cos § + sin A sin 8

Trigonometnc Functions

ten A + tan B
il + B = T mAmng
un(d — B = A~ tnB

1 + tan A tan B

sin (A - %) = ms(.-‘l - %) = sin A

: W o
sln(ﬁj +?) = cos A, cuﬁ(.dj +E) =

—cos A,

—5in A
sinAsin B = lr_'nﬁ{A ) écusl;:! + B)
cos A cos B = %curs(.i B+ = n:-q(ﬂ. + By
sindcos B = %qm{ﬂ. - B+ —sm(A + B)
sind + sin§ = 25ln—|;A + B)oos 5 {A — H)

sin4 — sin B 21:1:-1—{4! + B]sm,.,{ﬂ. — H)
cos A + cos B =’_"curs—(A+B}cns—|;A — B

cosAd — cos B ——Eﬁm—{A + E]sm,..{ﬂ. — H)

. Radi . y==nIx ¥ = oosx
Radian Measure | E | /I\ |
LY I
i T &7 T o % Fm F &0 & § = i
- B ks i
N WA NV RS AT ALA
T - Dhamain: (-, &) Domain: (-, =)
45 90 E] 2 Range: [-1,1] Range: [-1,1]
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< S -
weTe f T | Iy_m;l T
E II ) |I ]
i—-—g—& ar # =31, o f' ‘ ‘ / Y. ‘ t
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2 LYE] Z I 1 L I
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0w T T/‘ f 1{1 AE IIT TE 'T
1

The angles of two common triangles, in

degrees and radians.

Domain: All real numbers except odd

Domain: All real numbers except odd

integer multiples of =2 inleger mauliples of =2
Range: (-, =) Range: (—e, —1] L[], =}
¥ ¥
¥F=OSOX ¥ =oolx
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Ronge: (—a, —1JLIL, =)

Domain: x & 0, 2w, =2, ...
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m Volumes Using Cross-Sections

P, Cross-section S(x)
with area A(x)

b

FIGURE 6.1 A cross-section S(x) of
the solid S formed by intersecting S with
a plane P, perpendicular to the x-axis
through the point x in the interval [a, b].

In this section we define volumes of solids by using the areas of their cross-sections. A
cross-section of a solid § is the planar region formed by intersecting S with a plane
(Figure 6.1). We present three different methods for obtaining the cross-sections appropri-
ate to finding the volume of a particular solid: the method of slicing, the disk method, and
the washer method.

Suppose that we want to find the volume of a solid S like the one pictured in Figure 6.1.
At each point x in the interval [ a, b ] we form a cross-section S(x) by intersecting S with a
plane perpendicular to the x-axis through the point x, which gives a planar region whose
area 1s A(x). We will show that if A 1s a continuous function of x, then the volume of the solid
S is the definite integral of A(x). This method of computing volumes is known as the
method of slicing.

Before showing how this method works, we need to extend the definition of a cylinder
from the usual cylinders of classical geometry (which have circular, square, or other regu-
lar bases) to cylindrical solids that have more general bases. As shown in Figure 6.2, if the

A = base area

h ‘ Ih = height

i

Plane region whose Cylindrical solid based on region
area we know Volume = base area X height = Ah



X

FIGURE 6.3 A typical thin slab in the
solid &.

The approximating
cylinder based
on S(x;) has height
Axg =2 — 3y

I

Plane atx;

Plane at x;

/ ;*\\-\N x
The cylindar’s base
is the region S(x;)
wilh anea A(x,)

NOT TO SCALE

FIGURE 6.4 The solid thin slab in
Figure 6.3 is shown enlarged here. It is
approximated by the cylindrical solid with
base S(x;) having area Alx,) and height
A, = —x .

cylindrical solid has a base whose area is A and its height is Ak, then the volume of the
cylindrical solid is

Volume = area * height = A-h.

In the method of slicing, the base will be the cross-section of § that has area A(x), and the
height will correspond to the width Ax; of subintervals formed by partitioning the interval
[a@, b] into finitely many subintervals [x_,, x; ].

Slicing by Parallel Planes

We partition [a, ] into subintervals of width (length) Ax; and slice the solid, as we
would a loaf of bread, by planes perpendicular to the x-axis at the partition points
a=xy<x <<--- <<x, = b These planes slice § into thin “slabs™ (like thin slices of a
loaf of bread). A typical slab is shown in Figure 6.3. We approximate the slab between the
plane at x;_, and the plane at x; by a cylindrical solid with base area A(xy) and height
Axy = xp — x— (Figure 6.4). The volume V. of this cylindrical solid is Alxg) - Axy,
which is approximately the same volume as that of the slab:

Volume of the kth slab = V, = A(x,) Ax;.

The volume V of the entire solid § is therefore approximated by the sum of these cylindri-
cal volumes,

n n
V= >V= >A) Ax.
k=1 k=1

This is a Riemann sum for the function A(x) on [a, b]. The approximation given by this
Riemann sum converges to the definite integral of A(x) as n — oo

n ]
lim > A(x) Ax, = f A(x) dx.

ﬂ—b'_‘luk_-l

Therefore, we define this definite integral to be the volume of the solid 5.

DEFINITION The volume of a solid of integrable cross-sectional area A(x)
from x = a tox = b is the integral of A from a to b,
B

v =f A(x) dx.

This definition applies whenever A(x) is integrable, and in particular when A(x) is
continuous. To apply this definition to calculate the volume of a solid using cross-sections
perpendicular to the x-axis, take the following steps:

Calculating the Volume of a Solid

1. Sketch the solid and a fypical cross-section.

2. Find a formula for Aix), the area of a typical cross-section.
3. Find the limits of infegration.

4. Integrate A(x) to find the volume.



Suggestion — Draw graphs.
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FIGURE 6.6 The wedge of Example 2,

sliced perpendicular to the x-axis. The
cross-sections are rectangles.

EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two
planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the
first plane at a 45" angle at the center of the cylinder. Find the volume of the wedge.

Solution We draw the wedpe and sketch a typical cross-section perpendicular to the
r-axis (Figure 6.6). The base of the wedge in the figure is the semicircle with x = 0 that is
cut from the circle x* + y* = 9 by the 45° plane when it intersects the y-axis. For any x in
the interval [0,3], the y-values in this semicircular base wvary from
y=-%9 - ?—tn}' = V9 — x%. When we slice through the wedpe by a plane perpen-
dicular to the x-axis, we obtain a cross-section at x which is a rectangle of height x whose
width extends across the semicircular base. The area of this cross-section is

A(x) = (height)(width) = (x)(2V9 — +7)
= V9 — x*.

The rectangles run from x = 0 to x = 3, so we have

B 3
V=f A{x}dx=/2xv9 —x-dx
a ]

1

2 3 letuw =9 — x°,
= _E{Q - Iz)j'rz d 2x oy, inteprale,
0 and substitute hack.

=0+ %{9}3-*‘2
= 18, m



Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a planar region about an axis in its plane is
called a solid of revolution. To find the volume of a solid like the one shown in Figure 6.8,
we first observe that the cross-sectional area A(x) is the area of a disk of radius R{x), where
Ri{x) is the distance from the axis of revolution to the planar region’s boundary. The area is
then

A(x) = m(radius)® = 7 [ R(x) %

Therefore, the definition of volume gives us the following formula.

Volume by Disks for Rotation About the x-Axis
b

b
V=/A(x)dx =/ [ R(x)]? dx.

y=vx This method for calculating the volume of a solid of revolution is often called the disk
method because a cross-section is a circular disk of radius Rix).
Rax) = Vx
! : s
0 : n ",__“T,-—’J‘ EXAMPLE 4  The region between the curve y = Vx, 0 < x = 4, and the x-axis is
(@) revolved about the x-axis to generate a solid. Find its volume.

: Solution We draw figures showing the region, a typical radius, and the generated solid
: (Figure 6.8). The volume is

b
V =/ [ R(x)]* dx

4
/ ﬂ'[ \/:t-]zdt Radius R(x) = VX for
0

rotation around x-axis.

I
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To find the volume of a solid generated by revolving a region between the y-axis and a
curve x = Riy),c = v = d, about the y-axis, we use the same method with x replaced by
v. In this case, the area of the circular cross-section is

A(y) = w[radius ? = w[ ROV ]2,

and the definition of volume gives us the following formula.

Volume by Disks for Rotation About the y-Axis
d d
v =f A(y) dy =f [ R(y)]* dy.
L '

EXAMPLE 7 Find the volume of the solid penerated by revolving the region between
the y-axis and the curve x = 2/y, 1 = v = 4, about the y-axis.

¥ Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.11). The volume is

4
o= [irora
1

fd (2)2 Radius R(v) ,Emr
=[ =\y) ¥ . i
! - rotation around y-axis
4 4
4 3
R{}]=% =’r.r/I Fd‘}=4?i’|:—T:|] =4'JT|:E:| =37 |




Solids of Revolution: The Washer Method

If the region we revolve to penerate a solid does not border on or cross the axis of revolu-
tion, then the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the
axis of revolution are washers (the purplish circular surface in Figure 6.13) instead of
disks. The dimensions of a typical washer are

Outer radius:  Rix)
Inner radius: rix)




FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral
f:ﬁ(x) dx leads to a slightly different formula.

The washer’s area is the area of a circle of radius R(x) minus the area of a circle of radius
rix):

A) = w[R)]2 — w[r)]2 = = ([R) ]2 = [r(x)]2).

Consequently, the definition of volume in this case gives us the following formula.

Volume by Washers for Rotation About the x-Axis

V=fmm =f:w([frm12 - [r0]?) de.

This method for calculating the volume of a solid of revolution is called the washer
method because a thin slab of the solid resembles a circular washer with outer radius Rix)
and inner radius r{x).

EXAMPLE 9  The region bounded by the curve vy = x* + 1 and the line y = —x + 3
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution We use the same four steps for caleulating the volume of a solid that were dis-

cussed earlier in this section.

1. Draw the region and sketch a line segment across it perpendicular to the axis of revolu-
tion (the red segment in Figure 6. 14a).

2. Find the outer and inner radii of the washer that would be swept out by the line seg-
ment if it were revolved about the x-axis along with the region.

These radii are the distances of the ends of the line segment from the axis of revolution
(see Figure 6.14).

Washer cross-sedion Outer radius: Rix) = —x + 3
Outer mdius: R(x) = 1 + 3 Inner radius:  rix) = x2 + 1
Inner radius: fx) =x° + 1
(&) 3. Find the limits of integration by finding the x-coordinates of the intersection points of
FIGURE 6.14 (a) The region in the curve and line in Figure 6.14a.
Example % spanned by a line segment P+ l=—x+73

perpendicular to the axis of revolution.
(b} When the region is revolved about
the x-axis, the line segment generates a x+2x—-1=0

washer. x=-2, x=1 Limits of integration

X+x—-2=0



3. The solid lies between planes perpendicular to the x-axis at
x =—1 and x = 1. The cross-sections perpendicular to the
x-axis between these planes are squares whose bases run from the

semicircle y = =V 1 — x? to the semicircle y = V1 — x2



3. The solid lies between planes perpendicular to the x-axis at

x = —1 and x = I. The cross-sections perpendicular to the
x-axis between these planes are squares whose bases run from the
semicircle y = =V 1 — x? to the semicircle y = V1 — x2
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3. The solid lies between planes perpendicular to the x-axis at
x = —1 and x = I. The cross-sections perpendicular to the
x-axis between these planes are squares whose bases run from the

semicircle y = =V 1 — x? to the semicircle y = V1 — x2

3. A(x) = (edge)? =



3. The solid lies between planes perpendicular to the x-axis at
x = —1 and x = I. The cross-sections perpendicular to the
x-axis between these planes are squares whose bases run from the

semicircle y = =V 1 — x? to the semicircle y = V1 — x2

3. A(x) = (edge)? =[ﬁ—[—ﬁﬂz =( 1—x2 T =4(l—x2);



3. The solid lies between planes perpendicular to the x-axis at
x = —1 and x = I. The cross-sections perpendicular to the
x-axis between these planes are squares whose bases run from the

semicircle y = =V 1 — x? to the semicircle y = V1 — x2

3. A(x)=(edge)2=[ﬁ—(—ﬁﬂz=[ 1—.1:2}2:4(1—;:2); a=-1b=1



3. The solid lies between planes perpendicular to the x-axis at
x = —1 and x = I. The cross-sections perpendicular to the
x-axis between these planes are squares whose bases run from the

semicircle y = =V 1 — x? to the semicircle y = V1 — x2

V=JjA(x) dx = |

) . .
A(x) = (edge)” = l—xz—[— — ﬂ =2 1—sz —
\,

a=-1.b=1;



4. The solid lies between planes perpendicular to the x-axis at
x = —1l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

semicircle y = —V 1 — x? to the semicircle y = V1 — x°



4. The solid lies between planes perpendicular to the x-axis at
x = —l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

s 0w . . )
semicircle y = —V 1 — x? to the semicircle y = V1 — x°




4. The solid lies between planes perpendicular to the x-axis at
x = —l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

semicircle y = —V 1 — x? to the semicircle y = V1 — x°

(diag-:nnuad)2 _

4. A(x)= 5




4. The solid lies between planes perpendicular to the x-axis at
x = —l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

semicircle y = —V 1 — x? to the semicircle y = V1 — x°

(di.:rlgf:-ual)2 _
2 B 2 B 2

7] i)

4. A(x)= =2(1—x2); a=-1.b=1;



4. The solid lies between planes perpendicular to the x-axis at
x = —l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

semicircle y = —V 1 — x? to the semicircle y = V1 — x°

(diag-:nnlal)2 _
2 B 2 2

4. A(x)= =2(1—x2); a=-1.b=1;

V=JjA(x) dx=2j_1](l—x2)dx=2[x—§}]_1 =4(1—%)=%



Volumes by the Disk Method
In Exercises 17-20, find the volume of the solid generated by revolv-

4 ing the shaded region about the given axis.

18. About the y-axis
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Volumes by the Disk Method

18. About the y-axis _
In Exercises 17-20, find the volume of the solid generated by revolv-

0 ing the shaded region about the given axis.
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18. R(yv)=x=2=




Volumes by the Disk Method
. In Exercises 17-20, find the volume of the solid generated by revolv-

0 ing the shaded region about the given axis.

5 d

18. About the y-axis
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18. About the v-axis Volumes by the Disk Method
In Exercises 17-20, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.

n..“l\I

-2
\

18. R(y)=x




20. About the x-axis Volumes by the Disk Method
y In Exercises 17-20, find the volume of the solid generated by revolv-
11 y=sinxcosx ing the shaded region about the given axis.
~
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20. About the x-axis Volumes by the Disk Method
. In Exercises 17-20, find the volume of the solid generated by revolv-

h

11 y = sinx cos x ing the shaded region about the given axis.
| .
- —~—> X
0 T
2

20. R(x)=smxcosx; R(x)=0=a=0 and b=2% are the limits of mtegration;




20. About the x-axis Volumes by the Disk Method
y In Exercises 17-20, find the volume of the solid generated by revolv-
11 y=sinxcosx ing the shaded region about the given axis.
~
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20. R(x)=sinxcosx; R(x)=0=a=0 and b=2Z are the limits of integration;

2 .
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20. About the x-axis Volumes by the Disk Method

y In Exercises 17-20, find the volume of the solid generated by revolv-
11 y = sinxcosx ing the shaded region about the given axis.
~

SR

20. R(x)=sinxcosx;R(x)=0=a=0 and b=Z are the limits ofintegration;

V = J R( )] d"u—fr.[ (51111(:051)@’1—;?.[ '_(m%-dx [u— .1:>du—’7’d1:>‘g'=%:

. _ 0 7 _ 1 _1 " _zl(z_o\_olZ
.1.—0:>H—0:.1j.—2:>h’—ﬂ] — V= J’E’J sin” udu 8[2 481112”]0_8[( 0) 0}—




Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

39, The x-axis 40.

¥ =1\ cosx

]




Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

39. The x-axis

40.

V= %W C0Ds X 1
Y v =1
B W

|
|5

39. For the sketch given, a =—

0

T

2 ?

b

%; R(x) =1, r(x) =+/cos x;



Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

39. The x-axis

_'I.' =3 C0sS X
\

40.

\

|5

39. For the sketch given, a =—

0

T

2 ?

b

Z R =1 1) =eosx: ¥V =[x ([R)] =[] | v



Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

39. The x-axis 40.

V

v ="\ cosx t
N
N,

*

(0

Z"
|
(]

M I

|5

39. For the sketch given, a = —%, b

%; R(x)=1Lr(x)=4/cosx; V = Jj;fz’([R(Jc:)]2 —[I‘(I)]Z ) dx

_ /2 | L _ /2 3 N T2 N\ 2
_J_Hfzfr(l—cosl)dx—2ﬁjo (1-cosx) dx =27|x SIIIJ-.]O —2?.?(% 1)-:?3 27



Volumes by the Washer Method

Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

10. The y-axis

£




10. The y-axis

Volumes by the Washer Method Vv
Find the volumes of the solids generated by revolving the shaded A
regions in Exercises 39 and 40 about the indicated axes. -

i

4

X =tany
> |
0 I

d
40. For the sketch given, ¢ =0,d = %; R(y)y=Lr(y)y=tany.V = L E([R(y)]z —[r(y)]z ) dy



10. The y-axis

Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

X =tany

d
40. For the sketch given, ¢ =0,d = %; R(y)y=Lr(y)=tany;V = L E([R(y)]z —[r(y)]z ) dy

= HJ.;M('I— tan” _}f) dy = ::’IJ.;M(2 —sec” 1) dy = H[Zy - taln_}f]gTM = FI(% —l) = ﬁ; — 7T



* Questions?
We're here to help.
Remember the tutoring
center is open!
Study hard, best of luck!



