MAT112 -Mr. José Pabon
Recitation will start soon.
We will pass this course with a great grade
& meet our academic and professional
goals!




e MAT112 T.A. Mr. José Pabon

We will be courteous, civil to
each other.
NO SUCH THING AS AN

OBVIOUS QUESTION
ask ask ask any doubt to clear up
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Symmetry

The following list shows how to st for three standard types of symmetries when using
polar coordinates. These symmetries are illustrated in Figure 11.28.

Symmetry Tests for Polar Graphs in the Cartasian xy-Plana

1. Symmetry about the x-axis: If the point (r, 8) lies on the graph, then the point
{r,—& or (—r, ¥ — 8 lics on the graph {Figure 11.28a).

2. Syvmmetry about the y-acis: If the point (r, @) lies on the graph, then the point
{r, @ — 0 or (—r, —8) lies on the graph (Figure 11.28b).

3. Syvmmetry abowt the origin: If the point (r, ) lies on the graph, then the point
(—r.® or (r.8 + ) lies on the graph (Figure 11.28c).
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FIGURE 11.28 Thmee lests for symmetry
in polar coordinates.

Slope

The: slope of a polar curve r = f{f) in the ry-plane is dy/dr, but this is mot given by the
formula r' = df /dB. To see why, think of the graph of f as the graph of the parametnic
eguations

r=rcosd = fid)cos B, ¥ =rsn# = fifsind

If f is a differentiable function of &, then so are x and ¥ and, when dr/d8 = 0, we can
calculate dy/ dr from the parametric formula

dy _ dy/db e
ir—.-irl.-'dﬂ Zection 11.2, Eg. (1) with t = 8
4 (§(6 sin )
dff

=" Substitule

% ((8) cos 8)

%ﬁtnﬂ + fif)cos @
= Product Rule for derivatives

%{'ﬂﬁ-ﬂ — fif)sn @

Therefore we see that dy/dr is not the same as df /di.

Slope of the Curva r = {(#) in the Cartesian o-Plana

dy _ f'(@sin @ + flf) cos B ,
| T Filcosd — [ snd (N

AL

provided dr/df = 0 at (r, &)

If the curve r = (B} passes through the onigin at @ = 8, then fily) = 0, and the
slope equation gives

dy _ fBg)sinfy

— =———— = tanf,
drlg gy f'(8g)cos By o

That is, the slope at (0, &) is tan &;. The reason we say “slope at (0, 8)" and not just
“slope at the origin® is that a polar curve may pass through the origin (or any point) mom
than once, with different slopes at different #-valoes. This is not the case in our first exam-
ple, however.
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11.4 \SrEpNNG HoEr LOornase Equanons oo
EXAMPLE 1 Graph the curve r = | — cos # in the Cartesian xy-plane.
Solution The curve is symmetric about the r-axis because
ir.@lonthe graph =r =1 —cos @
=r=1— cos l::—-ﬂ::l oo @ = cos (—&)
=+ (r, —) on the graph.
As @ increases from 0 o o, cos @ decreases from | to —1, and r = | — cos @ increases

from a minimum value of 0 to @ maximum valee of 2. As # continues on from 7 to
2qr, cos @ increases from —1 back to | and r decreases from 2 back to 0. The curve starts
to repeat when @ = 27 because the cosine has penod 2.

The curve leaves the ongin with slope tan (0) = 0 and returns to the ongin with slope
tan (2o} = 0.

We make a table of values from 8 = 0 to @ = 7, plot the points, draw a smooth curve
through them with a horzontal tangent at the ongin, and reflect the curve across the r-axis o
complete the graph (Figure 11.29). The curve is called a cardioid because of its heart shape. l
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FIGURE 11.28 The steps in graphing the
cardioid r = 1 — cos 8 (Example 1). The
arrow shows the direction of increasing 8.

tan (2} = (.

We make a table of values from @ = 0 o @ = o, plot the points, draw a smooth curve
through them with a horzontal tangent at the ongin, and reflect the corve across the r-axis o
complete the graph (Figure 11.29). The curve is called a cardioid because of its heart shape. Wl

EXAMPLE 2 Graph the curve 72 = 4 cos # in the Cartesian tv-plane.
Solution The equation r? = 4 cos & reguires cos @ = 0, so we get the entiee graph by
munning # from — {2 to /2. The curve is symmetric about the r-axis because
{r, @y onthe graph = r* = 4 cos @
='J"I=4EIJS(—E} cos 8 = cos (—#)
= (r, —#) on the graph.
The curve is also symmetric about the origin because
(r, @ on the graph = r* = 4 cos @
= (—r)? = 4 cosd
== (—r, # on the graph.
Together, these two symmetries imply symmetry about the y-axis.
The curve passes through the origin when # = —7/2 and @ = /2. It has a vertical
tangent both times because tan @ is infinite.

For cach value of # in the interval between — /2 and /2, the formula r* = 4 cos @
gives two values of r:

r= *2%cos f.

We make a short tabke of values, plot the comesponding points, and use informaton about sym-
metry and tangents to guide us in connecting the points with a smooth curve (Figune 11300,

8 |oos@ |r = 22eos B L
1 +32 — r o e
- | = =t10 |
1] 2 | 2 2 \
™ 1 + 1) =
= | — =+17 \ !
4142 f /
+3 3 ~+14 \"}—"/ \__,/
]
- Loop forr = —2oosd,  Loop farr = 2/ oos
5| 0 0 I T
- 2=7=12 2="=12
{a) b
FIGURE 11.30 The graph of r* = 4 cos 8. The ammows show the direction of increasing 8.
The valoes of r in the table are rounded (Example 2). [ |
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Converting a Graph from the ré- to xy-Plane

One way to graph a polar equation r = fif} in the xy-planc is to make a table of
(r, @)-values, plot the comesponding points there, and connect them in order of increasing
8. This can work well if enough points have been plotted to reveal all the loops and dim-
ples in the graph. Another method of graphing is to

1. first graph the function r = fi#) in the Carfesian rd-planc,

2.  then use that Cariesian graph as a “table”™ and guide to sketch the polar coordinate
graph in the ry-planc.

This method is sometimes betier than simple point plotting because the first Cartesian
graph shows at a glance where r is positive, negative, and nonexistent, as well as where r is
increasing and decreasing. Here is an example.

EXAMPLE 3 Graph the lemmiscate curve r* = sin 28 in the Cartesian ry-plane.

Solution  For this example it will be easier to first plot r*, instead of r, as 2 function of @
in the Cartesian r#-plane (see Fipure 11.31a). We pass from them w the graph of
r= % Vsin 28 in the ré-plane (Fgure 11.31b), and then draw the polar graph (Figum
11.31c). The graph in Figure 11.31b “covers™ the final polar graph in Figure 11.3]c twice.
We could have managed with either loop alone, with the two upper halves, or with the two
lower halves. The double covening does no harm, however, and we actually karn a littke
more about the behavior of the function this way. [ |



Symmeiries and Polar Graphs
[dentify the symmetries of the curves in Exercises 1-12. Then skeich
the curves in the oy-plams_

Lr=1+cwad L r=2—-2ocos8
r=1—-sind d r=1+sin#

S r=2+sind 6. r=1+ 2zsin@
T. r = sinid/2) 8. r = cosiflf2)

9. r' = cos B 10. r* = sin@

1. r? = —gin @ 12, r? = —cos @



Symmeinies and Polar Graphs
[dentify the symmetries of the curves in Exercises 1-12. Then skeich
the curves in the oy-plams_

Lr=1+cwad L r=2—-2ocos8
r=1—-sind d r=1+sin#
S r=2+sind 6. r=1+ 2zsin@
T.r = sinid/2) B r = cosid/ 2}
9. r' = cos B 10. r* = sin@
1. r? = —gin @ 12 r? = —cos @

g, cuz-{—ﬁ"jl:msﬂ':r] —{r.—&) and (—r, —&) are on the graph when
(r. &) 15 on the graph = symmetric about the x-axis and y-ams:
therefore symmetnc about the ongin




Symmeinies and Polar Graphs
[dentify the symmetries of the curves in Exercises 1-12. Then skeich
the curves in the oy-plams_

Lr=1+cwad L r=2—-2ocos8
r=1—-sind d r=1+sin#
S r=2+sind 6. r=1+ 2zsin@
T.r = sinid/2) B r = cosid/ 2}
9. r' = cos B 10. r* = sin@
1. r? = —gin @ 12 r? = —cos @

10. zim:m'—ﬂ]=5i.u|5|'=r] —(r.7—F) and (—r.7— &) are on the graph
when (r. &) 15 on the graph = svmumetnc about the y-axs and the
x-axis; therefore symmetne about the ongm




Slopes of Polar Curves in the xy-Plana
Find the slopes of the curves in Exercises 17-20 at the given ponls.
Skeich the curves along with their tangends at these points.

I7. Cardioid r - —1 + cosf;, 8= /2

I8, Cardioid r = —1 + sinf;, & =0, %

19. Four-leaved rose r = sin2f;, # - tx/4, £3z/4
20, Fourleaved rose r=cos 28, 8 =0, t5/2 o

17 6=f=r=-1=(-1%). and 6=-L=r=-1=(-1-%]

2
r_dr _ oA _ r'unf+roosd _ —sin’ f+rcosd
r=g=—ung Slepe = e = Thnstessrime
- —sin* =)+ (-D)oes=
= Slope at (—L%] 15 3. R, |

—snEcoss - (-1sinE
—sin®(—£ )+ (~Tjcos(-£)

—sin[ = |cos( ] - (-Dsin[=]

Slope at(-1.-f) i

1

re | &cos

b | o
'-_-




Slopes of Polar Curves in the xy-Plana
Find the slopes of the curves in Exercises 17-20 at the given ponls.
Skeich the curves along with their tangends at these points.

I7. Cardioid r - —1 + cosf;, 8= /2

I8, Cardioid r = —1 + sinf;, & =0, %

19. Four-leaved rose r = sin2f;, # - tx/4, £3z/4
20, Fourleaved rose r=cos 28, 8 =0, t5/2 o

19 6=5=r=1=(L5); 6=-5=r=-1=(-1-%):
3 3m . ix 3 ).
f=E =113 s=_Eo o112,
[id _ ranf+roosd  looslEsinS+roos f
r —de - 2eos i, Slope = roosf-rand | 2o0s 18005 AT En s

|I :l Jcos| = sin| = | + (1) cos( = | L
Towsz oz Wamg)

v - Joos{—=)sin{—=) + (-I)cos| =

v (1) # S o
Ec-:ﬁ|__._,_]|5:r:||_T]|+|:—1}::-:u5{a_']| _
Jcos{ =) cos{ 3] - (-Dsinf3g)
Jcos| —= jsin| = | + ﬂ:ll:-ﬂil:—a'-:l _
Jeos{ = Jeos{ =) - Wsin )

smpear{-_i;g] is

Slope at (L —3F ) is
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FIGURE 11.33 The ara differential d4
for the curve r = F(i.
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FIGURE 11.34 The cardioid in
Exampla 1.
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A= lim 3 2(1(6)) Ag, =f 1 (@) do.
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Area of the Fan-Shaped Region Between the Origin and the Curve
r=fimwhenae = 8 = gr=0,and B — a = 2.

o
.'!=.£-irzd‘ﬂ

This is the integral of the area differential (Figune 11.33)

dA = 3r2d8 = 3 (fi6) ) db.

In the area formula above, we assumed that r = 0 and that the region does not sweep out
an angle of more than 2+ . This avoids issues with negatively signed arcas or with regions
that overlap themselves. More general regions can usually be handled by subdividing them
into regions of this type if necessary.

EXAMPLE 1 Find the arca of the region in the rp-plane enclosed by the cardioid
r= 21 + cos d).

Solution  We graph the cardioid (Figure 11.34) and determine that the radius 0P sweeps
out the region exactly once as 8 runs from 0 to 2. The area is therefor

=2 1 1w
[
F=0 o
1w

=f 21 + 2cos @ + cos”H) dO
o

1z
=f (1+4ma +2-w)dﬂ
(1]

o

A1+ cos 82 40

R

Az
=f (3 + 4cos 8 + cos 20) 40
o

: I
=[3ﬂ+45in9+¥] — 6w — 0 = 6. -
o

V ¥
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FIGURE 11.35 The ara of the shaded
regzion is calculated by subtracting the area
of the region between ry and the origin
from the area of the region bebween r; and

the origin.

- ERT

To find the area of a region like the one in Figure 11.35, which lies between two polar
curves i = R(@) and i = R(P) from @ = a © @ = B, we subtract the inkegral of
(1,24, d8 from the integral of (1/2)r® 8. This keads to the following formula.

ArcaoftheRegion 0 = rf@) = r= i), = # = B.and B — @ = 2.
1 g g
A=L irfda—f: iﬁldﬂ=£ il:rf—ﬁl]ﬂ'ﬂ (1

EXAMPLE 2 Find the arca of the region that lies inside the circle r = | and outside
the cardioid r = | — cos 8.

Solution We sketch the region to determine its boundaries and find the hmits of integra-
tion {(Figure 11.36). The outer curve is s = |, the innercurve is i = 1 — cos 8, and @
runs from —w 2 to o /2. The anca, from Equation (1), is

S
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FIGURE 11.36 The region and limits of
integration in Example 2. B llsinﬂ 8 min Eﬂ]"lz __® O
= = T-
o

2 4




FIGURE 11.38 Calculating the lengzth
of a cardioid (Example 4).

Langth of a Polar Curvea
If r = f(f) has a continuous first denvative for @ = 8 = A and if the point

Pr. 8) traces the curve r = f(@) exactly once as # runs from « to 8, then the

kngth of the curve 1s
s 2
L= f“ \/rr + (%) do. 3)

EXAMPLE 4 Find the length of the cardioid r = | — cos 8.

Solution We sketch the cardioid to determine the hmits of integration (Figure 11.38).
The point P(r, #) traces the curve once. counterclockwise as # runs from 0 to 27, so these

are the values we take for & and B.
With

= =in A,

&[5

r=1— cos@,

we have
I
P+ (i) = (1 — cos 8P + (sin B

=] —2cosf + cosf@ +sinf@ =2 — 2cos @



Find the areas of the regions in Exercises 9-18.
9. Shaed by the cicles r = Zcosfand r = Zsin @
10. Shaedbyibe cikcles r = |l and r = Z5in &

15. Im=ide the circle r = —2 cos & and ouiside the cikcle r = |
I6. Inside the circe r = & above the line r = 3¢sc @
17. Inside the circle r = 4 cos 8 and to the right of the vertical line

r=scf
I8. Inside the circle r= 4sinf@ and helow the horizontal lime
r=3csc

19. a. Find the area of the shaded region in the accompanying figure.

B r=2cosf and r=2sm &= cosF =2z 4
:&cnz-ﬁ':sinﬂ':t*ﬂ:-ﬁ-: therefore

A=2(" *Ll2:ng)lds = i *4zin’ 548

-

- ;-44[@#} dﬂ:fn' (2—2cas28) 48

=[26-sin26]] * =5 -1




Find the areas of the regions in Exercises 9-18.
9. Shaed by the cicles r = Zcosfand r = Zsin @
10. Shaedbyibe cikcles r = |l and r = Z5in &

15. Im=ide the circle r = —2 cos & and ouiside the cikcle r = |
I6. Inside the circe r = & above the line r = 3¢sc @

17. Inside the circle r = 4 cos 8 and to the right of the vertical line
r = scf

I8. Inside the circle r=4sinf and helow the horizonial line
r=3csc

19. a. Find the area of the shaded region in the accompanying figure.

10. r=1 and r=25i.n5::vzsinﬂ'=1::rsinﬂ'=% ¥

:&H:% or :'-T”; therefore

Sl 1
)

A=m{l)* - [(2sin &) —1°148

5/

=,I__|'5’_’"“|[25m3 g-t|de=a-[""

i

1—:-1525—-%} dd




Find ihe areas of the regions in Exercises 9-18.

9. Shared by the cicles r = Zcosfandr = 2 sin @
10. Shared by the cicles r = | and r = 2 sin @

15, Inside the circle r = —2 cos & and outside the circle r = |

16. In=ide the circle r = & abovethe line r = Iosc &
17. Inside the circle r = 4 cos 8 and to the right of the vertical line

r=scf
18. Inside the circle r= 4sinfd and below the horizondal line
r=3csc

19. a. Find the area of the shaded region in the accompanying figune.



Find ihe areas of the regions in Exercises 9-18.
9. Shared by the cicles r = Zcosfandr = 2 sin @
10. Shared by ihe ciclesr = |l and r = 2sin &

15. Im=ide the circle r = —2 cos & and ouiside the cikcle r = |
I6. Inside the circe r = & above the line r = 3¢sc @
17. Inside the circle r = 4 cos 8 and to the right of the vertical line

r=scf
I8. Inside the circle r=4sinf and helow the horizonial line
r=3csc

19. a. Find the area of the shaded region in the accompanying figure.

16. r=6 and r=3cscf = Gsinf =32 sinf=1=F=%orE;
therefore

A= j’:’ﬁuﬁi 9esc? 6) = [ 7" (18-Sesc 6) a6 f:h“'
_|IE-E+~,-::ntE {15;r-9-.,l":| (3 + 53] =122 93

I'-!‘



Find ihe areas of the regions in Exercises 9-18.
9. Shared by the cicles r = Zcosfandr = 2 sin @
10. Shared by the ciclesr = | and r = 2 sin 8

15. Im=ide the circle r = —2 cos & and ouiside the cikcle r = |

I6. Inside the circke r = & above the line r = 3¢5 #

17. Inside the circle r = 4 cos 8 and to the right of the vertical line
r=scf

I8. Inside the circle r=4sinf and helow the horizonial line
r=3csc

19. a. Find the area of the shaded region in the accompanying figure.

17. r=sect and !'=4cm-ﬁ:}4m5ﬁ'=;.e-:5:}cmlﬂ= 3

-I'I;' Jl[EJ-HEl}SEE'—:Eq:l E:l dﬂ:[m+45m25—tmﬁ]; 3

=(E2 25 ) -0+ 0-0)= 221




* (Questions?

We're here to help.
Remember the tutoring center is
open!

Study hard, best of luck!

Be well stay safe & healthy.



