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Recitation will start soon.

We will pass this course with a great grade & meet our academic and
professional goals
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Revolution About the - Axis

Revolution About the - Axis

Use the shell method to find the volumes of the solids generated by Use the shell method to find the volumes of the sohds generated by

revolving the resions bounded by the curves and lines in EIEI‘C‘]HEJF. revolving the mgions bounded by the curves and hines in Exercises
15-22 about the x-axis.

T—12 about the y-axis.

6. x =¥, x=—y, y=2, y=0 12.y=3/(2vk), y=0 x=1, x=4
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We will be courteous, civil to
each other.
NO SUCH THING AS AN

OBVIOUS QUESTION
ask ask ask any doubt to clear up



 Attendance is required.

Any absence justifications
must be addressed with the
office of the Dean of Students



Trngonometry Formulas

Definitions and Fundameantal Identities

Sine: sinfl = % = c;__ ] ‘h ¥
Cosine: cos = % = ﬁ g
Tangent: tan # = % = ﬁ "
Idantities

sin{—f#) = —sin @, cos(—¥ = cos @
sin®@ + cos @ =1, sec®@ =1+ wn’f, =@ =1+ cot® @
sin 28 = 2sin @ cos @, cos 280 = cos?@ — sin® @

cos” B = —11—“3# 5in2E=—]_ing
sinfd + B) = sinAcos B + cos A sin B
sinfA — H) = sinA cos B — cos A sin B
cos{d + B) = cos A cos B — sin A sin 8
cos{Ad — H) = cos A cos § + sin A sin 8

Trigonometnc Functions

ten A + tan B
il + B = T mAmng
un(d — B = A~ tnB

1 + tan A tan B

sin (A - %) = ms(.-‘l - %) = sin A

: W o
sln(ﬁj +?) = cos A, cuﬁ(.dj +E) =

—cos A,

—5in A
sinAsin B = lr_'nﬁ{A ) écusl;:! + B)
cos A cos B = %curs(.i B+ = n:-q(ﬂ. + By
sindcos B = %qm{ﬂ. - B+ —sm(A + B)
sind + sin§ = 25ln—|;A + B)oos 5 {A — H)

sin4 — sin B 21:1:-1—{4! + B]sm,.,{ﬂ. — H)
cos A + cos B =’_"curs—(A+B}cns—|;A — B

cosAd — cos B ——Eﬁm—{A + E]sm,..{ﬂ. — H)
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m Volumes Using Cross-Sections

P, Cross-section S(x)
with area A(x)

b

FIGURE 6.1 A cross-section S(x) of
the solid S formed by intersecting S with
a plane P, perpendicular to the x-axis
through the point x in the interval [a, b].

In this section we define volumes of solids by using the areas of their cross-sections. A
cross-section of a solid § is the planar region formed by intersecting S with a plane
(Figure 6.1). We present three different methods for obtaining the cross-sections appropri-
ate to finding the volume of a particular solid: the method of slicing, the disk method, and
the washer method.

Suppose that we want to find the volume of a solid S like the one pictured in Figure 6.1.
At each point x in the interval [ a, b ] we form a cross-section S(x) by intersecting S with a
plane perpendicular to the x-axis through the point x, which gives a planar region whose
area 1s A(x). We will show that if A 1s a continuous function of x, then the volume of the solid
S is the definite integral of A(x). This method of computing volumes is known as the
method of slicing.

Before showing how this method works, we need to extend the definition of a cylinder
from the usual cylinders of classical geometry (which have circular, square, or other regu-
lar bases) to cylindrical solids that have more general bases. As shown in Figure 6.2, if the

A = base area

h ‘ Ih = height

i

Plane region whose Cylindrical solid based on region
area we know Volume = base area X height = Ah



X

FIGURE 6.3 A typical thin slab in the
solid &.

The approximating
cylinder based
on S(x;) has height
Axg =2 — 3y

I

Plane atx;

Plane at x;

/ ;*\\-\N x
The cylindar’s base
is the region S(x;)
wilh anea A(x,)

NOT TO SCALE

FIGURE 6.4 The solid thin slab in
Figure 6.3 is shown enlarged here. It is
approximated by the cylindrical solid with
base S(x;) having area Alx,) and height
A, = —x .

cylindrical solid has a base whose area is A and its height is Ak, then the volume of the
cylindrical solid is

Volume = area * height = A-h.

In the method of slicing, the base will be the cross-section of § that has area A(x), and the
height will correspond to the width Ax; of subintervals formed by partitioning the interval
[a@, b] into finitely many subintervals [x_,, x; ].

Slicing by Parallel Planes

We partition [a, ] into subintervals of width (length) Ax; and slice the solid, as we
would a loaf of bread, by planes perpendicular to the x-axis at the partition points
a=xy<x <<--- <<x, = b These planes slice § into thin “slabs™ (like thin slices of a
loaf of bread). A typical slab is shown in Figure 6.3. We approximate the slab between the
plane at x;_, and the plane at x; by a cylindrical solid with base area A(xy) and height
Axy = xp — x— (Figure 6.4). The volume V. of this cylindrical solid is Alxg) - Axy,
which is approximately the same volume as that of the slab:

Volume of the kth slab = V, = A(x,) Ax;.

The volume V of the entire solid § is therefore approximated by the sum of these cylindri-
cal volumes,

n n
V= >V= >A) Ax.
k=1 k=1

This is a Riemann sum for the function A(x) on [a, b]. The approximation given by this
Riemann sum converges to the definite integral of A(x) as n — oo

n ]
lim > A(x) Ax, = f A(x) dx.

ﬂ—b'_‘luk_-l

Therefore, we define this definite integral to be the volume of the solid 5.

DEFINITION The volume of a solid of integrable cross-sectional area A(x)
from x = a tox = b is the integral of A from a to b,
B

v =f A(x) dx.

This definition applies whenever A(x) is integrable, and in particular when A(x) is
continuous. To apply this definition to calculate the volume of a solid using cross-sections
perpendicular to the x-axis, take the following steps:

Calculating the Volume of a Solid

1. Sketch the solid and a fypical cross-section.

2. Find a formula for Aix), the area of a typical cross-section.
3. Find the limits of infegration.

4. Integrate A(x) to find the volume.



Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a planar region about an axis in its plane is
called a solid of revolution. To find the volume of a solid like the one shown in Figure 6.8,
we first observe that the cross-sectional area A(x) is the area of a disk of radius R{x), where
Ri{x) is the distance from the axis of revolution to the planar region’s boundary. The area is
then

A(x) = m(radius)® = 7 [ R(x) %

Therefore, the definition of volume gives us the following formula.

Volume by Disks for Rotation About the x-Axis
b

b
V=/A(x)dx =/ [ R(x)]? dx.

y=vx This method for calculating the volume of a solid of revolution is often called the disk
method because a cross-section is a circular disk of radius Rix).
Rax) = Vx
! : s
0 : n ",__“T,-—’J‘ EXAMPLE 4  The region between the curve y = Vx, 0 < x = 4, and the x-axis is
(@) revolved about the x-axis to generate a solid. Find its volume.

: Solution We draw figures showing the region, a typical radius, and the generated solid
: (Figure 6.8). The volume is

b
V =/ [ R(x)]* dx

4
/ ﬂ'[ \/:t-]zdt Radius R(x) = VX for
0

rotation around x-axis.
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To find the volume of a solid generated by revolving a region between the y-axis and a
curve x = Riy),c = v = d, about the y-axis, we use the same method with x replaced by
v. In this case, the area of the circular cross-section is

A(y) = w[radius ? = w[ ROV ]2,

and the definition of volume gives us the following formula.

Volume by Disks for Rotation About the y-Axis
d d
v =f A(y) dy =f [ R(y)]* dy.
L '

EXAMPLE 7 Find the volume of the solid penerated by revolving the region between
the y-axis and the curve x = 2/y, 1 = v = 4, about the y-axis.

¥ Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.11). The volume is

4
o= [irora
1

fd (2)2 Radius R(v) ,Emr
=[ =\y) ¥ . i
! - rotation around y-axis
4 4
4 3
R{}]=% =’r.r/I Fd‘}=4?i’|:—T:|] =4'JT|:E:| =37 |




Solids of Revolution: The Washer Method

If the region we revolve to penerate a solid does not border on or cross the axis of revolu-
tion, then the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the
axis of revolution are washers (the purplish circular surface in Figure 6.13) instead of
disks. The dimensions of a typical washer are

Outer radius:  Rix)
Inner radius: rix)




FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral
f:ﬁ(x) dx leads to a slightly different formula.

The washer’s area is the area of a circle of radius R(x) minus the area of a circle of radius
rix):

A) = w[R)]2 — w[r)]2 = = ([R) ]2 = [r(x)]2).

Consequently, the definition of volume in this case gives us the following formula.

Volume by Washers for Rotation About the x-Axis

V=fmm =f:w([frm12 - [r0]?) de.

This method for calculating the volume of a solid of revolution is called the washer
method because a thin slab of the solid resembles a circular washer with outer radius Rix)
and inner radius r{x).

EXAMPLE 9  The region bounded by the curve vy = x* + 1 and the line y = —x + 3
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution We use the same four steps for caleulating the volume of a solid that were dis-

cussed earlier in this section.

1. Draw the region and sketch a line segment across it perpendicular to the axis of revolu-
tion (the red segment in Figure 6. 14a).

2. Find the outer and inner radii of the washer that would be swept out by the line seg-
ment if it were revolved about the x-axis along with the region.

These radii are the distances of the ends of the line segment from the axis of revolution
(see Figure 6.14).

Washer cross-sedion Outer radius: Rix) = —x + 3
Outer mdius: R(x) = 1 + 3 Inner radius:  rix) = x2 + 1
Inner radius: fx) =x° + 1
(&) 3. Find the limits of integration by finding the x-coordinates of the intersection points of
FIGURE 6.14 (a) The region in the curve and line in Figure 6.14a.
Example % spanned by a line segment P+ l=—x+73

perpendicular to the axis of revolution.
(b} When the region is revolved about
the x-axis, the line segment generates a x+2x—-1=0

washer. x=-2, x=1 Limits of integration

X+x—-2=0



4. The solid lies between planes perpendicular to the x-axis at
x = —1l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

semicircle y = —V 1 — x? to the semicircle y = V1 — x°



4. The solid lies between planes perpendicular to the x-axis at
x = —l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

s 0w . . )
semicircle y = —V 1 — x? to the semicircle y = V1 — x°




4. The solid lies between planes perpendicular to the x-axis at
x = —l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

semicircle y = —V 1 — x? to the semicircle y = V1 — x°

(diag-:nnuad)2 _

4. A(x)= 5




4. The solid lies between planes perpendicular to the x-axis at
x = —l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

semicircle y = —V 1 — x? to the semicircle y = V1 — x°

(di.:rlgf:-ual)2 _
2 B 2 B 2

7] i)

4. A(x)= =2(1—x2); a=-1.b=1;



4. The solid lies between planes perpendicular to the x-axis at
x = —l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

semicircle y = —V 1 — x? to the semicircle y = V1 — x°

(diag-:nnlal)2 _
2 B 2 2

4. A(x)= =2(1—x2); a=-1.b=1;

V=JjA(x) dx=2j_1](l—x2)dx=2[x—§}]_1 =4(1—%)=%



Volumes by the Disk Method
In Exercises 17-20, find the volume of the solid generated by revolv-

4 ing the shaded region about the given axis.

18. About the y-axis

\
fad |— ||
Ml,f




Volumes by the Disk Method

18. About the y-axis _
In Exercises 17-20, find the volume of the solid generated by revolv-

0 ing the shaded region about the given axis.
5 d
= \_/
X = T
L5 x
0 3
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18. R(yv)=x=2=




Volumes by the Disk Method
. In Exercises 17-20, find the volume of the solid generated by revolv-

0 ing the shaded region about the given axis.

5 d

18. About the y-axis

\
fad |— ||
Ml,f




18. About the v-axis Volumes by the Disk Method
In Exercises 17-20, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.

n..“l\I

-2
\

18. R(y)=x




Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

39, The x-axis 40.

¥ =1\ cosx

]




Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

39. The x-axis

40.

V= %W C0Ds X 1
Y v =1
B W

|
|5

39. For the sketch given, a =—

0

T

2 ?

b

%; R(x) =1, r(x) =+/cos x;



Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

39. The x-axis

_'I.' =3 C0sS X
\

40.

\

|5

39. For the sketch given, a =—

0

T

2 ?

b

Z R =1 1) =eosx: ¥V =[x ([R)] =[] | v



Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

39. The x-axis 40.

V

v ="\ cosx t
N
N,

*

(0

Z"
|
(]

M I

|5

39. For the sketch given, a = —%, b

%; R(x)=1Lr(x)=4/cosx; V = Jj;fz’([R(Jc:)]2 —[I‘(I)]Z ) dx

_ /2 | L _ /2 3 N T2 N\ 2
_J_Hfzfr(l—cosl)dx—2ﬁjo (1-cosx) dx =27|x SIIIJ-.]O —2?.?(% 1)-:?3 27



Volumes by the Washer Method

Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

10. The y-axis

£




10. The y-axis

Volumes by the Washer Method Vv
Find the volumes of the solids generated by revolving the shaded A
regions in Exercises 39 and 40 about the indicated axes. -

i

4

X =tany
> |
0 I

d
40. For the sketch given, ¢ =0,d = %; R(y)y=Lr(y)y=tany.V = L E([R(y)]z —[r(y)]z ) dy



10. The y-axis

Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

X =tany

d
40. For the sketch given, ¢ =0,d = %; R(y)y=Lr(y)=tany;V = L E([R(y)]z —[r(y)]z ) dy

= HJ.;M('I— tan” _}f) dy = ::’IJ.;M(2 —sec” 1) dy = H[Zy - taln_}f]gTM = FI(% —l) = ﬁ; — 7T



m Volumes Using Cylindrical Shells

In Section 6.1 we defined the volume of a solid to be the definite integral V = f;}A(x} dx,
where A(x) is an integrable cross-sectional area of the solid from x = a to x = b. The
area A(x) was obtained by slicing through the solid with a plane perpendicular to the
x-axis. However, this method of slicing is sometimes awkward to apply, as we will illus-
trate 1n our first example. To overcome this difficulty, we use the same integral definition
for volume, but obtain the area by slicing through the solid in a different way.

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, like cookie
cutters. We slice straight down through the solid so that the axis of each cylinder is parallel
to the y-axis. The vertical axis of each cylinder is always the same line, but the radii of the
cylinders increase with each slice. In this way the solid is sliced up into thin cylindrical
shells of constant thickness that grow outward from their common axis, like circular tree
rings. Unrolling a cylindrical shell shows that its volume is approximately that of a rectan-
gular slab with area A(x) and thickness Ax. This slab interpretation allows us to apply the
same Integral definition for volume as before. The following example provides some
insight.



AV, = circumference X height X thickness

The Shell Method

Suppose that the region bounded by the graph of a nonnegative continuous function
¥ = f(x) and the x-axis over the finite closed interval [a, b ] lies to the right of the verti-
cal line x = L (see Figure 6.19a). We assume a = L, so the vertical line may touch the
region but cannot pass through it. We generate a solid S by rotating this region about the
vertical line L.

Let Pbe a partition of the interval [a, b ] bythe pointsa = xp < x; < -+ < x, = b.
As usual, we choose a point ¢; in each subinterval [x;_;.x;]. In Example | we chose ¢;
to be the endpoint x;, but now it will be more convenient to let ¢; be the midpoint of the
subinterval [xg, x¢|. We approximate the region in Figure 6.19a with rectangles based
on this partition of [a, b]. A typical approximating rectangle has height f(c;) and width

Vertical axis
of revolution
Vertical axis L,
of revolution G Y =fx)
~ D
5 " - —
<
' d
> Rectangle
x Xp1 lElghl =ﬁck)
1 . ;
Ax

(a) (b)

FIGURE 6.19 When the region shown in (a) is revolved about the vertical line
x = L, asolid is produced which can be sliced into cylindrical shells. A typical shell
is shown in (b).



The volume of a cylindrical shell of
beight & with inner radius r and outer

radius K is

7R — wrth = Zﬂ(

R+r

2

)(h]"iﬁ —rl

Axp = x; — x;_y. If this rectangle is rotated about the vertical line x = L, then a shell is
swept out, as in Figure 6.19b. A formula from geometry tells us that the volume of the
shell swept out by the rectangle is
AV, = 27 ¥ average shell radius * shell height * thickness
= 2m-(cp — L)~ floy) - Axg. R=x — Landr =x,_, — L
We approximate the volume of the solid § by summing the volumes of the shells swept out
by the n rectangles:

;]
Vo= > AV.
k=1

The limit of this Riemann sum as each Ax; — 0 and n — oo gives the volume of the solid
as a definite integral:
R

b
V=lim > AV, = f 2ar(shell radius)(shell height) dx
i

M—0 =1

b
=f 2mlx — L)f(x) dx.

We refer to the variable of integration, here x, as the thickness variable. To emphasize the
process of the shell method, we state the general formula in terms of the shell radius and
shell height. This will allow for rotations about a horizontal line L as well.

Shell Formula for Revolution About a Vertical Line
The volume of the solid generated by revolving the region between the r-axis
and the graph of a continuous function vy = fix) = 0,L = a = x = b, about a

vertical line x = L is
B
shell shell
V= 2 dx.
fﬂ “T(radius)(height)

y %



Summary of the Shell Method
Repardless of the position of the axis of revolution (horizontal or vertical), the

steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of
revolution. Label the segment’s height or length (shell height) and distance
from the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product 2o (shell radius) (shell height) with respect to the
thickness variable (x or v) to find the volume.




EXAMPLE 2 The region bounded by the curve y = Vx, the x-axis, and the line
x = 4 is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution Sketch the region and draw a line segment across it parallel to the axis of revo-
lution (Figure 6.20a). Label the segment’s height (shell height) and distance from the axis
of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need not do that.)

. y / @2)
=== Shell radius $ < i -
V;l.? // - V3 = Shell height
/ V= -

B 4 3 Shell - .

T height e \

fix) = Vx " Interval of
l integration
> X
0 X 4 ’
Interval of inkegration
(a) (b)

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell
swept out by the vertical segment in part (a) with a width Ax.

The shell thickness variable is x, so the limits of integration for the shell formula are
a = 0and b = 4 (Figure 6.20). The volume is

b shell \{ shell
V= ﬂ Eﬂ(radius) (height) dx

= f 2a(x)( V) dx

4 4
= 2x] ©Pdx = zﬁ[%xﬁﬂ] - % n
i ]



Summary of the Shell Method
Repardless of the position of the axis of revolution (horizontal or vertical), the

steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of
revolution. Label the segment’s height or length (shell height) and distance
from the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product 2o (shell radius) (shell height) with respect to the
thickness variable (x or v) to find the volume.




EXAMPLE 2 The region bounded by the curve y = \/x, the x-axis, and the line
x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid by the
shell method.

Solution  This is the solid whose volume was found by the disk method in Example 4 of
Section 6.1. Now we find its volume by the shell method. First, sketch the region and draw
a line segment across it parallel to the axis of revolution (Figure 6.21a). Label the seg-
ment’s length (shell height) and distance from the axis of revolution (shell radius). (We
drew the shell in Figure 6.21b, but you need not do that.)

In this case, the shell thickness variable is y, so the limits of integration for the shell
formula method are @ = 0 and b = 2 (along the y-axis in Figure 6.21). The volume of the

solid is
B
B shell shell
V= f 2’*'r(nuiius)(h.eigm) dy
vl
= [ 2wt - 9y
0
2
=2 (dy — }'3} dy
0
472
= 2?1'[ 7 — }I?] = Bm.
o
¥
Ehell height
¥
a-y
Shell height
2L =2 y (4.2)
ss -
EZiof
R ¥ Shell radius
= 1 \
0 4 ‘EJ\I,'_”
(a)
FIGURE 6.21 (a) The region, shell dimensions, and interval of iniegration in Example 3.
(b} The shell swept cut by the horizental segment in part (a) with a width Ay. |

V %



The shell method gives the same answer as the washer method when both are used to
calculate the volume of a region. We do not prove that result here, but it is illustrated in
Exercises 37 and 38. (Exercise 45 outlines a proof.) Both volume formulas are actually

special cases of a general volume formula we will look at when studying double and triple
integrals in Chapter 15. That peneral formula also allows for computing volumes of solids
other than those swept out by regions of revolution.




Ravolution About the - Axis
Use the shell method to find the volumes of the solids generaied by

revolving the repions bounded by the curves and hines in Exercises
7—-12 about the y-axis.

12. y = 3/(2vx), y=0, x=1, x=4



Ravolution About the - Axis y
Use the shell method to find the volumes of the solids generaied by A

revolving the repions bounded by the curves and hines in Exercises 3
7—-12 about the y-axis.

12. y =3/(2vx), v=0, x=1, x=4




Ravolution About the - Axis y
Use the shell method to find the volumes of the solids generaied by 2 A

revolving the repions bounded by the curves and hines in Exercises 3
7—-12 about the y-axis.

12. y = 3/(2vx), y=0, x=1, x=4

12. a=1b=4:

_rf shell \ [ shell (5 (3 —12
P’—jﬂ2ﬂ( )(hﬂgn)dx—j;2ﬂa(axr )dx

radius



12.

Ravolution About the - Axis

Use the shell method to find the volumes of the solids generaied by
revolving the repions bounded by the curves and hines in Exercises
7—-12 about the y-axis.

12. y = 3/(2vx), y=0, x=1, x=4

a=1b=4;

b shell \ [ shell (5 (3 12
PF—IHZH( )(hagu)d”—flzﬁl(al’ )dx

radius

4 4
=3?Z'L W2 gy =37 E xsz . (43”2 —1)
1




12.

Ravolution About the - Axis

Use the shell method to find the volumes of the solids generaied by
revolving the repions bounded by the curves and hines in Exercises
7—-12 about the y-axis.

12. y = 3/(2vx), y=0, x=1, x=4

a=1b=4;
_ b shell shell _ 4 (3 —1/2
V_,L 2ﬂ(radiu5)(heig]1[)dx—jl 27X (Ex )dx
4 4
1 3 1

=27(8—-1)=14xn




Revolution About the x-Axis

Use the shell method to find the volumes of the solids generated by
revolving the eoons bounded by the curves and hines in Exercises
| 5322 about the x-axis.




Revolution About the x-Axis

Use the shell method to find the volumes of the solids generated by
revolving the eoons bounded by the curves and hines in Exercises
| 5322 about the x-axis.

—_—

: Xm=y
6. x =¥, x=—-y, ¥y=2, y=10

16. ¢=0,d=2;

d shell shell o 2 2 . .
V= .L 27 (mdius )(height ) d-}" — 0 25’3.7‘"”' [J’ _(_J/')] d}*’




Revolution About the x-Axis

Use the shell method to find the volumes of the solids generated by
revolving the eoons bounded by the curves and hines in Exercises
| 5322 about the x-axis.

—_—

| x=-y
6. x =¥, x=—-y, y=2 y=10
-2

16. ¢=0.d=2;
_ d shell shell o 2 2 ‘ |
V= .L 27 (mdius )(height ) d.}' = -[0 2:?3_}»‘ [J: - (—J,)} d},

o R
e



Revolution About the x-Axis y
Use the shell method to find the volumes of the solids generated by 2
revolving the eoons bounded by the curves and hines in Exercises

| 5322 about the x-axis.

—_—

_ X==Y xX=y2
6. x =¥, x=—-y, y=2 y=10
-2

16. ¢=0,d =2;

d shell | shell 02 2 ‘ ‘
V= .L 2 (mdius )(height ) dy = JO 27y [J" - (_J")} dy
43

el e o
e

=167 (2) =407

-
2



DEFINITION  If f° is continuous an | a, ¥, then the lemgth (arc kength) of
the curer ¥ = filx) from the point A = (2, flz}) o the point 8 = (b, fib]) ix
the: vailue oF the integral

5 s Iy
r.=J|r 1..-"I+[_f'Lr]-|’dr=J|r 1 +iEi & )




EXAMPLE 1 Find the length of the curve shown in Figure 6.24, which is the graph

of the function

4\%/531,3Krz 1

y = 0=x=L

Solution  We use Equation (3) witha = 0, b = 1, and
V2 5
3

y = [fx = 1,theny = 0.89

dy 42 3 |
—_— —— .fllz — 2 UE
o 3 T 2V 2 x

'\ 2
(%) = (2V2x'2)? = 8x.



4

The length of the curve over x = Otox = 1 1s

/\/ it—f \/1+81;¢11; Eq. (3)witha = 0,b = 1.

] .
_ =, 1 32| — E — [Letu = 1 + 8x, integrate,
3 (1 + 8x) L 6 2.17. and replace u by 1 + 8x.




