MAT112 -Mr. José Pabon
Recitation will start soon.
We will pass this course with a great grade & meet our academic and professional goals

Integration by Parts
Evaluate the integrals in Exercises 1-24 using integration by parts.
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Trngonometry Formulas

Definitions and Fundameantal Identities

Sine: sinfl = % = c;__ ] ‘h ¥
Cosine: cos = % = ﬁ g
Tangent: tan # = % = ﬁ "
Idantities

sin{—f#) = —sin @, cos(—¥ = cos @
sin®@ + cos @ =1, sec®@ =1+ wn’f, =@ =1+ cot® @
sin 28 = 2sin @ cos @, cos 280 = cos?@ — sin® @

cos” B = —11—“3# 5in2E=—]_ing
sinfd + B) = sinAcos B + cos A sin B
sinfA — H) = sinA cos B — cos A sin B
cos{d + B) = cos A cos B — sin A sin 8
cos{Ad — H) = cos A cos § + sin A sin 8

Trigonometnc Functions

ten A + tan B
il + B = T mAmng
un(d — B = A~ tnB

1 + tan A tan B

sin (A - %) = ms(.-‘l - %) = sin A

: W o
sln(ﬁj +?) = cos A, cuﬁ(.dj +E) =

—cos A,

—5in A
sinAsin B = lr_'nﬁ{A ) écusl;:! + B)
cos A cos B = %curs(.i B+ = n:-q(ﬂ. + By
sindcos B = %qm{ﬂ. - B+ —sm(A + B)
sind + sin§ = 25ln—|;A + B)oos 5 {A — H)

sin4 — sin B 21:1:-1—{4! + B]sm,.,{ﬂ. — H)
cos A + cos B =’_"curs—(A+B}cns—|;A — B

cosAd — cos B ——Eﬁm—{A + E]sm,..{ﬂ. — H)
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18. About the v-axis Volumes by the Disk Method
In Exercises 17-20, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.
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18. R(y)=x




10. The y-axis

Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 39 and 40 about the indicated axes.

X =tany

d
40. For the sketch given, ¢ =0,d = %; R(y)y=Lr(y)=tany;V = L E([R(y)]z —[r(y)]z ) dy

= HJ.;M('I— tan” _}f) dy = ::’IJ.;M(2 —sec” 1) dy = H[Zy - taln_}f]gTM = FI(% —l) = ﬁ; — 7T



Summary of the Shell Method
Repardless of the position of the axis of revolution (horizontal or vertical), the

steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of
revolution. Label the segment’s height or length (shell height) and distance
from the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product 2o (shell radius) (shell height) with respect to the
thickness variable (x or v) to find the volume.




EXAMPLE 2 The region bounded by the curve y = Vx, the x-axis, and the line
x = 4 is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution Sketch the region and draw a line segment across it parallel to the axis of revo-
lution (Figure 6.20a). Label the segment’s height (shell height) and distance from the axis
of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need not do that.)

. y / @2)
=== Shell radius $ < i -
V;l.? // - V3 = Shell height
/ V= -

B 4 3 Shell - .

T height e \

fix) = Vx " Interval of
l integration
> X
0 X 4 ’
Interval of inkegration
(a) (b)

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell
swept out by the vertical segment in part (a) with a width Ax.

The shell thickness variable is x, so the limits of integration for the shell formula are
a = 0and b = 4 (Figure 6.20). The volume is

b shell \{ shell
V= ﬂ Eﬂ(radius) (height) dx

= f 2a(x)( V) dx

4 4
= 2x] ©Pdx = zﬁ[%xﬁﬂ] - % n
i ]
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FIGURE 6.34 In Example | we
calculate the area of this surface.

Note that the square root in Equation (3) is similar to the one that appears in the formula
for the arc length differential of the generating curve in Equation (6) of Section 6.3.

EXAMPLE 1 Find the area of the surface generated by revolving the curve vy = 2 Vi,
1 = x = 2, about the x-axis (Figure 6.34).

Solution We evaluate the formula
’ dy\? L
S =£ 2ay4 |1 + dr dx Eg. (3}

d
a=1, b=2  y=2va 2__]

de A
First, we perform some algebraic manipulation on the radical in the integrand to transform
it into an expression that is easier to integrate.

P (2Y = s ()
ii‘{' 1\/@
_\j 1_\/r+|_\.fx+1
= 1+ T =
With these substitutions, we have

2 2
szf z«rr-zv?—””drqurf Vi + 1d
| x 1

with

X \/;
.\'{/_

=420+ 1)3.-*2}‘ =2 (3v3 - 2V2). O

1



DEFINITION The work done by a variable force Fix) in moving an object
along the x-axis fromx = atox = b is
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FIGURE 6.36 The force F needed to
hold a spring under compression increases
linearly as the spring is compressed
(Example 2).

b
W =f Fix) dx. (2)

Hooke's Law for Springs: F = kx

One calculation for work arises in finding the work required to stretch or compress a
spring. Hooke’s Law says that the force required to hold a stretched or compressed spring
1 units from its natural (unstressed) length is proportional to x. In symbols,

F = k. (3)

The constant k, measured in force units per unit length, is a characteristic of the
spring, called the force constant (or spring constant) of the spring. Hooke's Law, Equa-
tion (3), gives good results as long as the force doesn’t distort the metal in the spring. We
assume that the forces in this section are too small to do that.

EXAMPLE 2 Find the work required to compress a spring from its natural length of
1 ft to a length of 0.75 ft if the force constant is £ = 16 1b/ft.

Solution  We picture the uncompressed spring laid out along the r-axis with its movable
end at the origin and its fixed end at x = | ft (Figure 6.36). This enables us to describe the
force required to compress the spring from 0 to x with the formula F = 16x. To compress
the spring from 0 to 0.25 fi, the force must increase from

F(0)y=16-0=101Ib to F(0.25) = 16-0.25 = 41b.
The work done by F over this interval is

0.25 025 Eq. (2} with
W =f 16 dv = ax”—] — 05ftlb. a=0.0b=033, |
0 0 Fix) l6x



7.3

Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential func-
tions €' and e *. The hyperbolic functions simplify many mathematical expressions and
occur frequently in mathematical and engineering applications.

Definitions and ldentities
The hyperbolic sine and hyperbolic cosine functions are defined by the equations

X —X X —X
. e —e e + e
sinh x = — and coshx = B —

We pronounce sinh x as “cinch x.” rhyming with “pinch x.” and cosh x as “kosh x.,” rhym-
ing with “gosh x.” From this basic pair, we define the hyperbolic tangent, cotangent,
secant, and cosecant functions. The defining equations and graphs of these functions are
shown in Table 7.4. We will see that the hyperbolic functions bear many similarities to the
trigonometric functions after which they are named.

Hyperbolic functions satisfy the identities in Table 7.5. Except for differences in sign,
these resemble identities we know for the trigonometric functions. The identities are
proved directly from the definitions, as we show here for the second one:

: ) A=t N[ et + e
2sinh x cosh x = 2( 3 )( 5 )

= T Simplify.

= sinh 2x. Definition of sinh



The other identities are obtained similarly, by substituting in the definitions of the
hyperbolic functions and using algebra.

For any real number u, we know the point with coordinates (cos u, sin u) lies on the
unit circle x> + y*> = 1. So the trigonometric functions are sometimes called the circular
functions. Because of the first identity

cosh?u — sinh?u = 1,

with u substituted for x in Table 7.5, the point having coordinates (cosh u, sinh u) lies on
the right-hand branch of the hyperbola x* — y* = 1. This is where the hyperbolic func-
tions get their names (see Exercise 86).




TABLE 7.5 Identities for
hyperbolic functions

cosh® x — sinh® 1 = 1
zinh 2Zr = 2 sinh.x coshx
cosh 2r = cosh®x + sinh’r

cosh 2r + |
g

CIJSITI:I =

_ ocosh2r — |
= ——

-

sinhix

tanh®x 1 — sechix

-

coth*x 1 + csch’x

TAEBLE 7.6 Derivatives of
hyperbolic functions

du
dr

d . _
e (sinh u) = cosh u

d — cinh
dl_l:tcﬁh u} = sinh L

P p2
d:__l;:t.anhm = sech L=

o o
e (coth w) C5C H.::'.:r

G nch 4} = —sec du
dl_(ﬁ:...he-r}— :—::...hu'lanhe-rdr

4 cschu) = —csch ucoth w3
E(cs...huj— ...5-..I1u-..u::1lu.rm_

The other identities are obtained similarly, by substituting in the definitions of the
hyperbolic functions and using algehra.

For any real number i, we know the point with coordinaies (cos . sin ) lies on the
unit circle 1% + ¥? = 1. So the rigonometric functions are sometimes called the circular
functions. Because of the first identity

- ¥
cosh®u — sinb®u = 1,

with i substituied for x in Table 7.5, the point having coordinates (cosh w, sinh ) lies on
the right-hand branch of the hyperbola 1@ — ¥* = 1. This is wher the kyperbolic func-
tions get their names (see Exercizse 86).

Hyperbolic functions are useful in finding integrals, which we will see in Chapter 8.
They play an important role in science and engineering as well. The hyvperbolic cosine
describes the shape of a hanging cable or wire that is strung betwesn two points at the
same height and hanging freely (see Exercise 83 The shape of the 5t Lowis Arch is an
imverted hyperbolic cosine. The hvperbolic tangent ocours in the formuala for the velocity
of an ocean wave moving over water having a constant depth, and the inverse hyperbolic
tangent describes how nelative velocities sum according o Einsein’s Law in the Special
Theory of Relativity.

Dervatives and Integrals of Hyperbolic Functions

The six hyperbolic functions, being rational combinations of the differentiable functions
e and £, have derivatives at every point at which they are defined (Tabk 7.6). Again,
thers are similarities with trigonometric functions.

The derivative formulas are derived from the derivative of &%

— —H
%isinh u) = %(""T*') D fimition of sink

_ e'dujds + e du/dx

-

odu
= cosh H’E. [ finition of cosh @

-

[ v of



EXAMPLE 3 Evaluaie

1
f 2 gt
p V3 + 4r?



EXAMPLE 3 Evaluae

1
f 2 gt
p V3 + 4r?

Solution The indefinite integral is

2 dx i
= ¥ = Ixr, du 2y, @
.[ W3+ 4rt Vat +
= sinh ] (E) + C Farmula from Tabd=7.10

sinh™! (%) + C.



EXAMPLE 3 Evaluaie

1
f 2 gt
p V3 + 4r?

Solution The indefinike integral is

f 2 dr f' du S
—_— = u =2y du=72idr, o
V3 4+ 4xt Vat

+ W
sinh ! (L-!) + O Faormuala from Table 710

-_.I

} r
sinh™1 (— + C.
V'3

Therefore,

sinh ™’ (%) — sinh ™ (0}

=)

= ginh ! (%) — 0 = DOB6H6S,



TABLE 8.1 Basic integration formulas

1.

2.

Lo

=

n

&

-

o

10.

11.

/k dc = kx + C (any number k)

/x“dx= L C m#E-1)

/a-‘fdxz @ . c @=0,a#1l
Ina

/sinxdx=—cosx+C

fcosxdx=sinx+C

/seczxdx =tanx + C

. ]csczxdx = —cotx + C

fsecxtanxdx =secx + C

/cscxcutxdx =—¢cscx + C

12

13

14

15.

16.

17.

1

e

19.

tan x dx

-/
-/

secxdx =

cscxdx =

dx
']Vaz—xz

Jats
az_xz

f dx
1#a2_x2

dx _
]x\.fxz — a?

= sinh‘l(

In [secx| + C

In |sinx| + C

In [secx + tanx| + C

—In |cscx + cotx| + C

fsinhxdx = coshx + C

coshxdxy = sinhx + C

= sin_l(%) +C
%tan_l(%) +C

ES&C

—11X

Haz|l + C
2)+C  (a
§)+c (x

LW}
W
W

§ o
W
W

0)

a = 0)




] — sinx’

/4 d
EXAMPLE 4  Find / 1
0

Solution We multiply the numerator and denominator of the integrand by | + sin.x.
This procedure transforms the integral into one we can evaluate:

/4 /4 _
/ dx o / | . | + sinx dy Multiply and divide
o | —sinx o I —sinx I +sinx ™ by conjugate.

/4 .
| + sinx -
= P dx Simplify.
o | — sin“x
/4 .
o | + sinx o i
— —Ed.r ]l — sin“x = cos~x
0 COS“ X

Use Table 8.1,
Formulas 8 and 10

/4
:/ (sec? x + sec xtanx) dx
0

/4

:{tanx+secx} =(1+\/§_{D+ l)):\/i' -

0




EXAMPLE 6 Evaluate

f 3x +2
——dx.
V1 — x°

Solution We first separate the integrand to get

fx—E . / X dx 2' dx
V1 —x* 1T— 22 V1 - 2

In the first of these new integrals, we substitute

=1 — x% du = —2x dx, 50 xdx = —% du.
Then we obtain
o —1/2 '
3/‘&:3/M=_1/, 12 du
V1 — x? . Viu 2,
3 ul? L —
= _Eﬁ + C, = -3VI1 —x + (.

The second of the new integrals is a standard form,

E/d—‘1 = 2sin"'x + C,.
JVI-2

Combining these results and renaming C, + G, as C gives

Iy + 2 —
f :‘_rh =—-31 —x*+ 2sin"'x + C.
V1 — x°




The integral of any odd function over any symmetric interval is always zero.

! 3.,_]‘_.,41 _1 4 4 _]‘ _
[t = gty = 00— (414) = () - (1) =

W= | =

Same for:

5634
1 4 1 1 1
widr = —xt 25, = = (5634 — (—5634%)) = = (5634 — (5634%)) = ~(0)
5634 4 4 4 4

As well as
5634 1
/ .'1'.'333333 dr — ."I.'333334 .5_6?{;}434
. 333334
_ 333334(5634333334 . (_5634333334))
1 1
— (5634333334 . (5634333334)) — (U) _ )
333334 333334 333334

(3)






2
3. J(sec x —tanx) dx

2 2 2
sec” x—2secxtanx +tan” x

Expand the integrand: (secx — tanx)

2 2 .
sec” x—2secxtanx+(sec” x—1)

"
2sec x—2secxtanx—1



2
3. J(sec X —tan x) dx

-

F

2 2
sec” x—2secxtanx +tan” x

Expand the integrand: (secx — tan x)

2 2 .
sec” x—2secxtanx+(sec” x—1)

,
2sec x—2secxtanx—1

2 ) _
J(secx— tanx) dxy = 2J5&c“ X dx — 2jsecxtanx dx — Jl dx
=2tanx—2secx—x+C

We have used Formulas 8 and 10 from Table 8.1.






2111:3
8. dz
16z

3
u=Inz=3lnz du-=

dz

NS

Using Formula 5 m Table 8.1,

2].'[1__3 J_
——dz = }[2“ dui
16z 48




2111:3
8. dz
16z

3
u=Inz"=3Inz du=—dz

N W

Using Formula 5 mn Table 8.1.

]11_
“du
f 16z

2 3.111 z3

T 48In2 482

+C



Integration by Parts Formula

fu[.r)v’[.r] dx = u(x)v(x) —/v[.r]u'{.r}dr

This formula allows us to exchange the problem of computing the integral fu[.r] v'(x) dx
with the problem of computing a different integral, j v(x) u'(x) dx. In many cases, we can
choose the functions « and v so that the second integral 1s easier to compute than the first.

There can be many choices for « and v, and it 1s not always clear which choice works best,
so sometimes we need to try several.

The formula is often given in differential form. With v'(x) dx = dv and u'(x) dx = du,
the integration by parts formula becomes

Integration by Parts Formula— Differential Version

/udv = v —/vdu




EXAMPLE 1 Find

/ X Ccos X dx.

Solution There is no obvious antiderivative of x cos x, so we use the integration by parts
formula

/ u(x)v'(x) dx = u(x)v(x) — / v(x)u'(x) dx
to change this expression to one that 1s easier to integrate. We first decide how to choose
the functions u(x) and v(x). In this case we factor the expression x cos x into
u(x) = x and v'(x) = cosx.
Next we differentiate u(x) and find an antiderivative of v'(x),

w'(x)y =1 and wv(x) = sinx.



When finding an antiderivative for v'(x) we have a choice of how to pick a constant of
integration C. We choose the constant C = 0, since that makes this antiderivative as sim-
ple as possible. We now apply the integration by parts formula:

/x cosxdx = xsinx —/Sin x (1) dx [ntegration by parts formula

u(x) v'(x) ux) wvix) v(x) u'(x)
=xsinx + cosx + C Integrate and simplify. [ |

and we have found the integral of the original function.

There are four apparent choices available for u(x) and v'(x) in Example 1:

1. Letu(x) =1 and v'(x) = xcos x. 2. Letu(x) = x and v'(x) = cos x.

3. Letu(x) = xcosx and v'(x) = 1. 4. Letu(x) = cosxand v'(x) = x.

Choice 2 was used in Example 1. The other three choices lead to integrals we don’t know
how to integrate. For instance, Choice 3, with u'(x) = cosx — xsinx, leads to the
integral

/(x cos x — x2sin x) dx.

The goal of integration by parts is to go from an integral fu(x)v’(x) dx that we don’t
see how to evaluate to an integral fv(x)u’(x) dx that we can evaluate. Generally, you
choose v'(x) first to be as much of the integrand as we can readily integrate; u(x) is the
leftover part. When finding v(x) from v'(x), any antiderivative will work, and we usually
pick the simplest one; no arbitrary constant of integration is needed in v(x) because it
would simplv cancel out of the right-hand side of Equation (2).



Integration by Parts
Evaluate the integrals in Exercises 1-24 using integration by parts.

1. fxsin%dx » 2. /acnmﬂda

3. frzcnsrdr 4. /fsinj:dx
2 €

5./11[]1(# 6. /13 In x dx
l I

7. /xfrdx 3. /xelrdx




Integration by Parts
Evaluate the integrals in Exercises 1-24 using integration by parts.

1. /.TSi[]%iT 2. /H cos h db

2. u=6.du=d6é.dv=cosm8db.v= isin T



Integration by Parts
Evaluate the integrals in Exercises 1-24 using integration by parts.

1. /If»;in%dr 2. /H cos h db

2. u=6.du=de@.dv=cosmfdob.v= isin 6"

J.Ef’CDS 70 do = %sin 76 — J.%Sin 760 do = %Siﬂﬂ@‘l— L cosmB+C
T



Integration by Parts
Evaluate the integrals in Exercises 1-24 using integration by parts.

1. fxsin%dx 2. /acnmﬂda

3. frzcnsrdr 4. /fsinj:dx
2 €

5./11[]1(# -6./131111{&
l I

7. /xfrdx 3. /xelrdx



Integration by Parts
Evaluate the integrals in Exercises 1-24 using integration by parts.

l.fxsing.{ir 2. /9 cos h db
3. ftz cos t dt 4. /xz sin x dx

-

5. / x In x dx 6. /ﬁ In x dx
I I

3
6. u=]11;t::,a’u=%;a’v=x dx, v




6.

Integration by Parts
Evaluate the integrals in Exercises 1-24 using integration by parts.

1. /xsin%dx . fﬂ cos h db
3. /1‘2 cos t dt . fxz sin x dx

5. / x In x dx . /ﬁ In xdx
I I

I~

L =9

=a)

3
1:=]11;l::,a’u=%;a’v=:l: dx, v




Integration by Parts
Evaluate the integrals in Exercises 1-24 using integration by parts.

1. /xsin%dx 2. fﬂcoswﬂ'dﬂ
3. /tzcostdt 4. /xzsinxdx

xlnxdx x3 In x dx

[xm fxe




Integration by Parts

Evaluate the integrals in Exercises 1-24 using integration by parts.

1. /x singdx

3. /r2 cost dt

5. / x In xdx
1

7. /xe" dx

(2]

4

6

8

8. u=ux.du

. /Scoswﬂdﬂ

T .
X sin x dx

g/
: /. ¥ In xdx
g/

xe* dx

=dy:dv=e"dx.v= %E’.‘

3x .

-



Integration by Parts
Evaluate the integrals in Exercises 1-24 using integration by parts.

1. /xsin%dr 2. /8 cos mf df

3. | 2costdt 4. [ x%sinxdx

5. x In x dx 6. x3 In xdx

7. | xe*dx 8. [ xe* dx

k\t‘\*?_,\
—












* Questions?
We're here to help.
Remember the tutoring
center is open!
Study hard, best of luck!



