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Power Series and Convergence

We begin with the formal definition, which specifies the notation and terminology used for
power series.

DEFINITIONS A power series about x = 0 is a series of the form

o0
X" =Cp+ X + X+ ot o (1)
n=0

A power series about x = a is a series of the form

Gx —al'=c+cx —a)+ ok —at+ - -+ox—at+--- (2
n=»0

in which the center a and the coefficients ¢, ¢, ¢5, . ... ¢, ... areconstants.




‘ 1
Power Series for
1 — x

ll_r:E.r", x| <1

Equation (1) is the special case obtained by taking @ = 0 in Equation (2). We will see
that a power series defines a function f(x) on a certain interval where it converges. More-

over, this function will be shown to be continuous and differentiable over the interior of
that interval.

EXAMPLE 1 Taking all the coefficients to be 1 in Equation (1) gives the geometric
power series

[ o]
St =1+x+x2+ X+
n=0

This is the geometric series with first term 1 and ratio x. It converges to 1/(1 — x) for
| x| < 1. We express this fact by writing

llx:l+x+x2+”'+x”+'”’ -1 <x <1 (3)



EXAMPLE 3 For what values of x do the following power series converge? Solution Apply the Ratio Test to the series 2, |u, |, where u, is the nth term of the power
- \ 5 3 series in question.

-1 _ X ..

(a) ?;( l:} n X 2 + 3 I,n—l _E

n+1%

By the Ratio Test, the series converges absolutely for |x| < 1 and diverges for

x| 1. At =x=1, we pget the alternating harmonic series

1—-1/2+1/3—-1/4+ ---, which converges. At x = —1, we get —1 — 1/2—

My
Uy

n
= m|x| — |x|

(a)

1/3 —1/4 — ..., the nepative of the harmonic series, which diverges. Series (a)
converges for —1 <X x = | and diverges elsewhere.
“ N | L =T

-1 0 I

We will see in Example 6 that this series converges to the function In (1 + x) on the
interval (—1, 1] (see Figure 10.19).

FIGURE 10.19 The power series x — 5 - T7 +

converges on the interval (—1, 1].



THEOREM 18—The Convergence Theorem for Power Series
If the power series

Max" =ay + aix + ax’ + -+ comverges at x = ¢ # 0, then it converges

r=i

absolutely for all x with |x| < |¢|. If the series diverges at x = d, then it
diverges for all x with x| = |d|.

Corollary to Theorem 18
The convergence of the series X ¢ (x — a)" is described by one of the following
three cases:

1. There is a positive number K such that the series diverges for x with
|x — a| > R but converges absolutely for x with |x — a| <= R. The series
may or may not converge ateither of the endpointsx = ¢ — Randx = a + R.

2. The series converges absolutely for every x (R = o0).
3. The series converpges at x = a and diverpes elsewhere (R = 0).




How to Test a Power Series for Convergence
1. Use the Ratio Test (or Root Test) to find the larpest open interval where the
series converges absolutely,

lx—a|<R o a—-R<x<a+R

2 If R is finite, test for convergence or diverpence at each endpoint, as in
Examples 3a and b. Use a Comparison Test, the Integral Test, or the Alternating
Series Test.

3. If R is finite, the series diverges for |[x — a| > R (it does not even converge
conditionally) because the nth term does not approach zero for those values of x.

THEOREM 19—Series Multiplication for Power Series
If A(x) = 3,—pa,x" and B(x) = 3,_,b.x" converge absolutely for |x| < R,
and

n
Ch = ﬂﬂbn + ﬂlbn—] + ﬂlbn—ﬂ + -+ l:I.l'l—l'bl + Hnbﬂ = ;}Hkbn—h

then ¥ ,—oc.x" converges absolutely to A(x)B(x) for |x| < R:

(iaﬁ)(ibﬁx“) = icnf’.

n={ r={l n=il




THEOREM 22— Term-by-Term Integration

Suppose that EXAMPLE 6  The series

fix) = 21:,,11 —a) I
- —=1-t+r-F+--
1 +1

converges fora — R < x < a + R(R = 0). Then

Ba {X _ H}J'I—|
>N comverges on the open interval —1 < t < 1. Therefore,
converges fora — R << x < a + R and T
= @ —ar! Inil + 1 d Il+IJ Iil+ B
f(x}dx=§r:nﬁ+6' ni X) = ﬂml_l_i E—E : . Iheorem 22
fora— R<x<a+R. g il
SR
or
.| n—1 b
In(1 +x) = E[+, —l<x<l.
‘ Alternating Harmonic Series Sum =1
In? — = (—1)n! It can also be shown that the series converpes at ¥ = 1 to the number In 2, but that was not
o= E i puaranteed by the theorem. A proof of this is outlined in Exercise 61. L]

n=1



Intervals of Convergence
In Exercises 1-36, (a) find the series’ radius and interval of conver-

gence. For what values of x does the series converge (b) absolutely, ]
(¢} conditionally? - WO -+
(3x + 1)°

32 n+ 2

]



Intervals of Convergence

In Exercises 1-36, (a) find the series’ radius and interval of conver-
gence. For what values of x does the series converge (b) absolutely,
(¢} conditionally?

-.Iil-! . 1
=] = =
- i i ) 321y . - i - . . . - .
32, lim "1 <1= lim | : )4 212 < 1= [3x+]] lim (%”—Jﬁ]{l:‘)‘:r-l—l‘{l:}—l{_&x#—l{l
n—soo | Un H—yoo n+ (3x+1) n—yeo ' =IT
2 2 ()™ " ‘ -
— —= < x<0; when x= -3 we have Z —~. A conditionally convergent series; when x =0
2 z

n=l1

F ] (1)}r+1 B = 1 _ 1 .
we have » ST = > 5 a divergent series

n=l1 n=1
(a) the radius 1s ? the interval of convergence 1s —% <x<0
(b) the interval of absolute convergence 1s —% <x<0

. - -
(c) the series converges conditionally at x=—=



Conditional Convergence

If we replace all the negative terms in the alternating series in Example 3, changing them
to positive terms instead, we obtain the geometric series X 1 /2". The original series and
the new series of absolute values both converge (although to different sums). For an abso-
lutely convergent series, changing infinitely many of the negative terms in the series to
positive values does not change its property of still being a convergent series. Other con-
vergent series may behave differently. The convergent alternating harmonic series has
infinitely many negative terms, but if we change its negative terms to positive values, the
resulting series 1s the divergent harmonic series. So the presence of infinitely many nega-
tive terms 1s essential to the convergence of the alternating harmonic series. The following
terminology distinguishes these two types of convergent series.

DEFINITION A series that is convergent but not absolutely convergent is called
conditionally convergent.

The alternating harmonic series is conditionally convergent, or converges conditionally.
The next example extends that result to the alternating p-series.



EXAMPLE 4 If p is a positive constant, the sequence {1/nP} is a decreasing
sequence with limit zero. Therefore, the alternating p-series

x(_l}n—l_ [ [ 1
EH—P_I_Z_P+3_P_4_P+ e, p =0

n=1

CONVerges.
If p > 1, the series converges absolutely as an ordinary p-series. If 0 << p = 1, the
series converges conditionally by the alternating series test. For instance,

l l I

Absolute convergence (p — 3/2): | — 5372 + SRR 4o

l | 1
—_ _|_ — 4+ e
V2 V3 V4
We need to be careful when using a conditionally convergent series. We have seen with
the alternating harmonic series that altering the signs of infinitely many terms of a condi-

tionally convergent series can change its convergence status. Even more, simply changing
the order of occurrence of infinitely many of its terms can also have a significant effect, as

Conditional convergence (p — 1/2): | ]

we now discuss.



Intervals of Convergence
In Exercises 1-36, (a) find the series’ radius and interval of conver-

gence. For what values of x does the series converge (b) absolutely,
(e} conditionally?




Intervals of Convergence

e For bt il o 3 st sorcs comvcres y sboatuetn = 3=3-T---(In + 1) o
(¢} conditionally? 3""- E T A Tﬂ
a=1 e L
T
. u | C 357 (2n+)(2(n+ D)+ 2 4m | . 2n+3m° |
34. lm [ <]1= lim — ) : n-2 1 f:l:}‘.‘r‘ lim ( )2 <1
H—soo | Un N—300 (n+1)=2"* 3.5.7(2n+1)x™* n—soo \ 2(n+l)

— only x =0 satisfies this inequality

(a) the radius s O; the series converges only for x =0

(b) the series converges absolutely only for x =0

(c) there are no values for which the series converges conditionally



Taylor and Maclaurin Series

The series on the right-hand side of Equation (1) is the most important and useful series
we will study in this chapter.

DEFINITIONS Let f be a function with derivatives of all orders throughout
some interval containing @ as an interior point. Then the Taylor series generated
by fatx = ais

o] ki W
%f;} (x — a) = fla) + fla)x — a) + f,;f} (x — a)?
nl
+ - +fngiﬂ{x—a)"+

The Maclaurin series of f is the Taylor series penerated by fat x = 0, or

= 90 "(0 "0
S [}x"=f{l}}+f’{ﬂ}.r+f;!}.rz+---+‘FHE}

Ll

The Maclaurin series generated by f is often just called the Taylor series of f.

y %



EXAMPLE 1 Find the Taylor series penerated by fix) = 1/x at a = 2. Where, if
anywhere, does the series converge to 1 /x7?

Solution We need to find f(2), f'(2), f"(2), . ... Taking denvatives we get

fiy=xY fix)=—-x2 §fx)=2x7, ..., M%) = (=10l "t

s0 that
41 1 2 1 ™2y =1y
fA='=3 f@Q=--% Sr=-=g5... 5 =5
The Taylor series is
f(2) F2)
f2) + FD)ix - 2) - =; x—2FP+--- + L) L
] x-=-2) (x-27 (x — 2)"
=§_ 2‘1 + 23 _”-+{_”H En+] + -
This is a peometric series with first term 1/2 and ratio r = —(x — 2)/2. It converges
absolutely for [x — 2| < 2 and its sum is
1/2 | |

1l+x-2/2 2+@x-2) =~

In this example the Taylor series penerated by fix) = 1/x at a = 2 converges to 1 /x for
x—2| =2or0 <x <4 |



Taylor Polynomials

The linearization of a differentiable function f at a point a is the polynomial of degree one
given by

Pix) = fla) + fladx — a).

In Section 3.11 we used this linearization to approximate f(x) at values of x near a. If f has
derivatives of higher order at a, then it has higher-order polynomial approximations as well,
one for each available derivative. These polynomials are called the Taylor polynomials of f.

DEFINITION Let f be a function with denivatives of orderk fork = 1,2, ..., N
in some interval containing @ as an interior point. Then for any integer n from 0
through N, the Taylor polynomial of order n generated by f at x = a is the
polynomial

P = f@ + fa - + e —ap + -
) n)
+ ﬁkiﬂj{x —aft+ -+ ‘f{niﬂj{x —ay.

We speak of a Taylor polynomial of order n rather than degree n because f"a) may
be zero. The first two Taylor polynomials of f(x) = cosx at x = 0, for example, are
Fjix) = 1 and Pj(x) = 1. The first-order Taylor polynomial has degree zero, not one.

Just as the linearization of f at x = a provides the best linear approximation of f in
the neighborhood of a, the higher-order Taylor polynomials provide the “best” polynomial
approximations of their respective degrees. (See Exercise 44.)

y %



EXAMPLE 2 Find the Taylor series and the Taylor polynomials generated by
fix) =etatx = 0.

Solution Since f™x) = " and f™(0) = | foreveryn = 0, 1, 2, . . . , the Taylor series
penerated by f at x = 0 (see Figure 10.22) is

1 F"N0)
fl 2!x?+--.+ Xt
x? X
_|+I+E+ +;+

I
[
=z

This is also the Maclaurin series for €. In the next section we will see that the series
converges to e° at every x.

EXAMPLE 3 Find the Taylor series and Taylor polynomials generated by fix) = cosx
at x = 0.

Solution The cosine and its derivatives are

fix) = Cos X, flix) = —sin x,
fix) = —COS X, i = sinx,

F2m(x) - (—1"cos x, FiInr iy - (—1)" 'sinx
At x = 0, the cosines are | and the sines are 0, s0
20y = (-1, f2N0) = 0.
The Tavlor series generated by f at 0 is
"0 "0 2]
f{l}x“f(l)xu_‘ +an dny

fi0) + £(0)x +

x! X2

=1+4+0- x—§+l} R Rl D"t *
B (=D
;_:5 (26!

This is also the Maclaurin series for cos x. Notice that only even powers of x occur in the
Taylor series penerated by the cosine function, which is consistent with the fact that it is an
even function. In Section 10.9, we will see that the series converges to cos x at every x.



Finding Taylor Series at x = 0 (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises | 1-24.

gt — g x
2

20, sinhx



Finding Taylor Series at x = 0 (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises | 1-24.

. X -Xx
20. smhxy= % =

M|n—-

2 3 4
X X X
H“”+E+§+I+m

N

gt — g x

20, sinhx

2 3 4
X X X —
““*E’§+m’~ﬂ—x+

2




Finding Taylor Series at x = 0 (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises | 1-24.

X

.
'1'x+]




Finding Taylor Series at x = 0 (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises | 1-24.

-6 (n) (=D"n!
) jf ( ) ( _|_1)n‘+1 :

22. f(x)=4; f()—z"” f()—

£(0)=0, £/(0)=0, £7(0)=2. £"(0) = —6. f<"> O =(=)"n ifn>2= x> - +x -+ = i (=1)"x"
n=2



* (Questions?

We're here to help.
Remember the tutoring center is
open!

Study hard, best of luck!

Be well stay safe & healthy.






