Complex Analysis MAT656 August 2019.

José Pabón May, 2020

These problems are from the pdf received from Prof. Blackmore. The course textbook is Ablowitz and Fokas [1].

1 August 2019 Problem 6. - REDACTED

$$f(z) = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \dots + \frac{1}{n!z^n}$$

1.1 a -

$$f(z) = \frac{1}{2\pi i} \int \frac{1}{f(z)} f'(z) dz$$

1.1.1 Solution:

By the argument principle, this is the number of zeros of f minus the number of poles of f (counted with multiplicity) inside the disk of radius r

1.2 b - REDACTED
$$r$$
?

To make the notation clearer, we redefine f as f_n then we have that $f_n(z) = \sum_{k=0}^n z^{-k}/k!$ Note that $f_n(z) \longrightarrow e^{1/z}$ as $n \longrightarrow \infty$ for each z (this is just the Taylor series for $e^{1/z}$). By uniform convergence, the limit as $n \longrightarrow \infty$ of the integral of $\frac{1}{f_n} f'_n$ is the same as the integral of the limit as $n \longrightarrow \infty$ of $\frac{1}{f_n} f'_n$. Since $f_n(z) \longrightarrow e^{1/z}$, we find that $f'_n(z) \longrightarrow -\frac{1}{z^2} e^{\frac{1}{z}}$, so $\frac{1}{f_n(z)} f'_n(z) \longrightarrow -\frac{1}{z^2}$. In other words, $\lim_{n \to \infty} \frac{1}{(2\pi i)} \int_{|z|=r} \frac{1}{f_n(z)} f'_n(z) dz = \frac{1}{(2\pi i)} \int_{|z|=r} -\frac{1}{z^2} dz$. This integral can be evaluated by parameterizing the curve |z| = r, and we find it is 0.

1.3 REDACTED

For fixed r, the integral approaches 0 as n approaches infinity. Since the integral always takes integral values, we find that the integral is exactly 0 for all n sufficiently large. Thus f(z) has no zeroes or poles for large n.

L LREDAC

1

Conclusion 2

Thank you to Prof. Blackmore for his instruction, lectures and office hours effort. It's been an honor and a privilege to be your student. I look forward to any feedback and learning more of the material in this course and beyond.

References

[1] Mark J Ablowitz, Athanassios S Fokas, and AS Fokas. Complex variables: introduction and applications. Cambridge University Press, 2003. José I. Pabón ® proprietary José L. Pabón B confidential B José L. Pabón
José L. Pabón