Complex Analysis MAT656 August 2019.

José Pabon

July 2020

These problems are from the July 2020 preliminary qualifying examination. The
course MAT656 was received from Prof. Blackmore. The course textbook is Ablowitz
and Fokas [1].

1 July 2020 Problem 1. - Consider the function:

1.1 a- Show that if f = u+v is conformal on D, i.e f’ is nonvan-
REDACTED

We make note of the fact that the gradients of u and v are perpendicular to their level

curves. In two dimensions, if the level curves u(x,y) = ¢;, v(x,y) = ¢y are perpendicular

then the gradients of u and v would also be perpendicular. Thus, it is the case that if

the Vu, Vv are perpendicular, then so must the level curves u(z,y) = ¢1, v(x,y) = ¢ .
We consider the dot product Vu - Vo:

du du dv dv du dv du dv
—),VU<CL’,y,) = (£’<d_y) = Vu -Vv= (—

Via Cauchy Riemann equations, we know that:

du dv du dv

dr _dy’dy  dz
We substitute these in to find that:

du du du du

) L A ——)=0 V f lytic.

Vu - Vv (dx dy)+(dy dac) analytic
Similarly, for v:

dv dv dv  dv
. =(— .= —_———) = v f lytic.
Vu - Vv (dx dy) + (dy dgc) 0 analytic



Thus, within our domain D of analyticity, the level curves u = constant and v =

constant are orthogonal wherever they intersect if f is conformal.

1.2 REDACTED
REDACTED

1.2.1 Proposed solution:

We note that ‘f’(z)‘ =1 = f(2) = €2 + ¢ for some ¢ € C. Thus, we have that
f is a linear mapping that is a translation by c after a rotation by #. Note that under
this mapping for any two arbitrary values z; = x1 + Y1, 20 = T9 + iy, the quantities

|wy — 21| = | f(x2) — f(z1)| are identical, as well as |yo — y1| = | f(12) — f(y1)|.
We calculate the Jacobian:

f(2) =€’z 4+ c=(cosf +isind)(zx +iy) + (co +ic,.

Note that Re{c} = ¢, and Im{c} = ¢,.

We simplify the above expression:

cosf) —sinf z Cy
Flz,y)=| . + :
sinf)  cos@ Y Cy
We find that the map F' is an isometry also, given that:
det{ cosf) —sind Vo1,
sinf  cos6
Thus we have that:

|22 — 21 = |[F((22)) = F((21))], [y2 — 1] = |[F((y2) = F((31))]

Given we have that areas in our complex plane are defined by the product between

the lengths in their two dimensional coordinates (x,%), we then must have that:

w2 — 21| - g2 — | = [F((22) = F((21))| - [F((32)) = F(n))] ¥V (a,9) €D,

There must an equivalent statement to these that equates the in variance of dz, dy, du, dv
and dA under the transformation of variables, but I do not presently have an exposition

for this part. Any advice will be appreciated!



2 July 2020 Problem 2. - Consider the function:

2.1 a - Riemann Zeta Function.

REDACTED

REDACTED.

2.1.1 Solution - prove the absolute convergence.:

For this exposition we will use the notation of exp{z} = e*.

We have that:

1 1 11

n? nr+w ﬁ nw
We know that n* = exp{logn®} = exp{zlogn}, thus we have that:

1
— =exp{—=zlogn} = exp{—xlogn}exp{—iylogn}
nZ

We verify the absolute convergence of our whole infinite sums by considering the
infinite sum of the above expression. We know that !exp{—iy log n}‘ = ‘e”} =1Vxvy
€ R. Thus:

[e.o] o0 o

= Z |exp{—xlog n}exp{—iylog n}‘ = Z }exp{—$10g n}| = Z

n=1 n=1 n=1

1

n$

=1
2

n=1

[£(2)] =

Via our familiar 'p series’ test, the series sum converges for exponent p > 1, thus,

€)=Y

n?
n=1

is absolutely convergent for = Re{z} > 1 4 € whenever ¢ > 0.

2.1.9 Solution - REDACTED

We examine the analyticity of the series by computing its derivative,

Given :

£(z) = Z % = Zexp{—zlogn}.
n=1 n=1



We compute derivative

oo

£ (z):= Z —lognexp{—=zlogn}.

n=1

We apply an nth term test with

a, = —lognexp{—zlogn},a,s1 = —log(n+ 1) exp{ —zlog(n + 1)}

We then have that the ratio =2+ = 12%22&1)), which in the limit as n goes to infinity

gives us an indeterminate form of 2.
We apply L’Hopital’s Rule to this limit to find that:

1
li =0

for

o0

-, —lognexp{—=zlogn} converges and

- Thus the series representation for £ (z) := 3
is well defined, thus, £(2) is analytic wherever the series is convergent, which we found

in an earlier result is valid for Re{z} > 1 V.

2.2 2b - Contour integral.

We skip this integral at this time, the problem is well in line with other contour integral

problems discussed in class.

2.3 2c - REDACTED points z, = * for all positive integers n
must be identically

zero.

The author realizes this exposition is perhaps attempting to be more rigorous than may be
necessary; a succinct proof for this problem may simply invoke the isolated zero theorem
and pronounce that any arbitrary neighborhood centered at zero inside of |z| < 1 contains
an infinite number of elements of z,.

From the Isolated Zero Theorem we know that the zeros of an analytic function are
isolated. The definition of an entire function is that it is analytic over the entire complex
plane.

We claim that for some e greater than zero, there is a neighborhood |z| < € such that
there are an infinite number of elements of z, in that neighborhood. We can prove this
by constructing N, = E}, such that for every n greater than N, we have that % < e and
thus there is a neighborhood |z| < € such that there are an infinite number of elements

of z, in that neighborhood.



.. Thus, in this neighborhood we have that our entire, analytic function f has an
infinite amount of zeroes. For the analyticity of this function to hold, all of the limits
the values of the function in all directions must agree, and therefore the function must be
identically zero in this neighborhood. Given the arbitrary nature of the selected € and the
fact that our function f is entire (and thus analytic everywhere on the complex plane),
our function f is therefore proven to have to necessarily be identically zero everywhere

in the complex plane. v/

3 Conclusion

Thank you to Prof. Blackmore for his instruction, lectures and office hours effort. It’s
been an honor and a privilege to be your student. I look forward to any feedback and

learning more of the material in this course and beyond.
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